COST Action CA22137 2023-2027

R
or \ Software Development
e for Reuse

1st ROAR-NET Training School — Lecture

Sandra Greiner
greiner@imada.sdu.dk

OOOOOOOOOOOOOOOOOOO
NNNNNNNNNNNNNNNNNNNN

mailto:greiner@imada.sdu.dk

Preclaimer

This lecture...
does NOT involve mathematics

reuses some material from an open-source course on SPLE by Thomas Thim,
Elias Kuiter, and Timo Kehrer

please be interactive, asks questions throughout the lecture
= learn concepts how to reuse software systematically

https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines

Motivation: Complex, Configurable Software

General Parameters Configuring F
Max target
e enges This guide is a first attempt to describe the various configuration settings in F. Most users can
Select the maximum number of aligned sequences to display @ operate with the default settings, but as the system design is finalized, some of these options may
Short queries ically adjust for short input > need to be changed such that the system is most efficient.
Expect threshold e This guide includes:
[zt [5v 1@ « How to Configure F’
Maxmatchesina | o |@ « AcConstants.in
Query range » FpConfig.hpp
. « Type Settings
Scoring Parameters UFEEAG
Matrix « Object Settings
BLOSUME2 v | @ .
Gap Costs Existence: 11 Extension: 1 v | @ o Port Tracing
i — - « Port Serialization
Compositional ["Conditional score matrix ~ e '
adjustments * Serialization Type ID
. - « Buffer Sizes
Filters and Masking N
« Text Logging
Filter [J Low complexity regions @ « Misc Configuration Settings
Mask [Mask for lookup table only €
(] Mask lower case letiers @ « Component Configuration

 Conclusion

Complex, Configurable Software which EVOLVES

[

c O 8 https//github.com/MarlinFirmware/Marlin/commit/7a96a082b70deeeds 64}
=| Window 10 update can crash your PC — 0 ¢ -
nowing 6 changed files with 202 additions and 11 deletions. 1 what to do now AT S e
e changed fes S By Henry T. Casey published December 21, 2020 o sy e ar vy tenreasing/ o (©
B arinvsrc 22 w0 280,12 21,1 8 restros(stren °s,
- e . Major Windows utility affected by Windows 10 update A

.DD:’""S”'“‘" @ 0OOB0CO »commen:0 ot o s s
0 pinsh o] N
o s o »
3 pins BLackaEEzINLY R p———
[pios o7 8TI0021 01) B o a0 oo tla g = S
B ot ptomions, | 5 2 o = st
D ofsecondrenamepy G -
Wil lackp111_ras
0 simsartioi @

S{eommen_stns2.busla Flags)
20D MODULE EUABLED
—oont_uasT pooue ewsier L

)
acype. stensize 1)

B gL Qe

e Y

(Image credit: Shutterstock)

Marlin (3D printer software) numpy-lib commit: markdown, tests, C-file, ...

Let’s build a Graph library:

What constitutes a Graph?

public class Graph { ... }

public class Edge {
private double weight;
private Node source;
private Node target;

public Edge(...) { ...}
}

public class Node { ... }
public class Color { ... }

[weighted] [graph2]

https://commons.wikimedia.org/wiki/File:Weighted_Graph.svg
https://www.flickr.com/photos/38075047@N00/6865783139

Copy and Adapting Programs (= Software Variants)

public class Graph { ... }

public class Edge {
private double weight;
private Node source;
private Node target;

public Edge(...) { ...}
}

public class Node { ... }
public class Color { ... }

Weighted, Directed,
Colored Graph

public class Graph { ... }
public class Edge {
private Node[] nodes = new Node[2];

public Edge(...) { ...}

}
ublic class Graph { ... }

ublic class Edge {
private Node source;
private Node target;

public Edge(...) { ...}
}

public class Node { ... }

Directed Graph

Complex Configurable Software, which EVOLVES

WRANGLING COMPLEXITY

use abstractions and organized reuse

[linux] [wrangling]

https://www.flickr.com/photos/28648431@N00/59445744
https://www.flickr.com/photos/38075047@N00/6865783139

Concepts to support organized reuse

(and introduce software product line engineering)

Mass Production

Mass Production
result of industrialization
goods produced from standardized
parts
— reduced cost, increased
productivity, improved quality
but: (almost) no individualized
product

Example Principle: One Size Fits All
e.g., swiss-army knife

Mass Produced Software?

— software satisfying the needs of most
customers

— but then, customers

miss desired functionality

overwhelmed with not needed
functionality (e.g., contemporary office or
graphics programs).

Often this generality makes software
complex, slow, and buggy.

[wollmilchsau] [army knife]

https://en.wiktionary.org/wiki/eierlegende_Wollmilchsau#/media/File:Wollmilchsau.png
https://en.wikipedia.org/wiki/Swiss_Army_knife#/media/File:Wenger_EvoGrip_S17.JPG

Mass Customization

Mass Customization

= mass production + customization
individual, customized goods at cost
similar to mass production

Example: Car Configuration

s 45D
- Other Domains

computers and laptops, electronics,
@ % 3% % food, medicine, clothing, bikes ...,

software?
................ @ @ = @

Mass Customization for Software?

Mass Customization for Software?
customization: individually developed software products

mass production: standard software developed once for millions or billions of
users (e.g., Whatsapp messenger)

mass customization: software product lines

Why Software Product Lines? Goal:

resource limitations: memory, avoid expensive customization
performance, energy

how is software normally developed?
different hardware, or laws

What is a Feature?

Feature Features in Software Product Lines
A feature is a characteristic or In SPLE, features
end-user-visible behavior of a software

specify and communicate
commonalities and differences of
products between stakeholders

system.

guide the structure, reuse, and
variation throughout software life
cycle.

Recap: The Software Life Cycle

requirements
specification

design
implementation

time (module test)

integration

(system test)
development

maimienance maintenance |

What is a Product?

Product Terminology

A product of a product line is specified by here: product == product variant ==
a valid feature selection (a subset of the variant

features of the product line). software product: a product only of
A feature selection is valid if and only if it software
fulfills all feature dependencies. Note

software is more than source code: e.g,,
requirements, models, source code,
tests, documentation; we focus on
source code

What is a Domain?

Domain Features of a Domain

A domain is an area of knowledge: a feature is a domain abstraction
scoped to maximally satisfy its identification of features in a domain
stakeholders’ requirements, requires domain expertise
including a set of concepts and later: select features for a product

terminology understood by line?
practitioners in that area

including the knowledge of how to

build (parts of) software systems in
that area.

Software Product Lines

A software product line is

a set of software-intensive systems that (aka. products or variants)

share a common, managed set of features
(common set; not all products have all features in common)

satisfy specific needs of a particular market segment or mission (aka. domain)

are developed from a common set of core assets in a prescribed way. (aka.
planned, structured reuse)

Software Engineering Institute, Carnegie Mellon University

https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=513819

Product-Line Engineering

Software product-line engineering is a paradigm to develop software applications
(software-intensive systems and software products) using software platforms and
mass customization.

Promises of Product Lines
tailor-made
reduced costs
improved quality
reduced time-to-market

Idea of Product-Line Engineering

Reduced effort per product resulting
from up-front investment into a product
line:

Effort

T T T
product line vs single system

Number of products

12

Single-System Engineering

classical software development (of
single product);

not considered as product-line

engineering

Summary - Introduction

Lessons Learned
mass customization = mass production + customization
software product line
software product line engineering
features, products, domains

Interaction
Which examples of (software) product lines are you aware of?

Where have you experienced copying and pasting source code and thought does
that work more systematically?

Exemplify the difference between feature, product, domain, and product line

Software Product Line Engineering Process

20

Software Product Line Engineering Process

solution space

problem space !

domain analysis domain implementation

domain variability mapping realization artifacts
knowledge model ' (source code, models, ...)

domain
engineering

common implementation

requirements

requirements analysis product derivation

featire

customer :
eeds product-specific selection product (incl.

application
engineering

requirements | validation& verifaction)

[Greiner 2022] based on [Apel 2013]

principles of organized reuse and feature model to describe the
variability, configuration space
implemented in a shared platform variability mechanism to realize the

platform

21

SPLE Process: Graph Library contd.

public class Graph { ... }

public class Graph { ... } public class Edge {
// #ifdef Weighted

private double weight;

public class Edge { // #endif
. . . // #ifdef Directed
pr:.Lvate double Welght’ private Node source;
private Node source; private Node target;
rivate Node target; // #elif
p g ’ feature mOdel private Node[] nodes = new Node[2];
// #endif
public Edge(...) { ...}
} public Edge(...) { ...}
}
. public class Node { ... }
publ?c class Node { ... } 7/ #ifdet Colozed
pUbllC class Color { e } public class Color { ... }

// #endif

superimposition of variants - —
annotated superimposition

of variants
22

Product Derivation

public class Graph { ... }
public class Edge {
// #ifdef Weighted
private double weight;
// #endif
// #ifdef Directed
private Node source;
private Node target;
// #elif
private Node[] nodes = new Node[2];
// #endif

public Edge(...) { ...}
}

public class Node { ... }
// #ifdef Colored

public class Color { ... }
// #endif

annotated superimposition

filter

public class Graph { ... }
public class Edge {
private double weight;
private Node[] nodes = new Node[2];

public Edge(...) { ...}
}

public class Node { ... }

single variant (product)

23

Classification

(positive variability) [negative variabilityj

(proactive)

product | engineering (reactive)
generation

‘ technology tool-driven)

SPLE approaches—{ implementation | A load-time

binding

time

compile-time
granularity variability
i implementation
quality pre-planning
effort

feature criteria
traceability transformational
anormation hiding)

separation of
concerns

based on [Greiner2022]

24

Classification

Implementation Criteria:

binding time: runtime vs compile-time vs load-time
technology: tool-driven, language-based
technique: annotative, transformational, compositional

Quality criteria:
granularity information hiding
uniformity separation of concerns
feature traceability pre-planning effort

25

Runtime Variability

26

(Boolean) Variables

public class Config {
public static boolean COLORED = true;
public static boolean WEIGHTED = false;

public class Graph {

Edge add(Node n, Node m) {
Edge e = new Edge(n, m);
nodes.add(n); nodes.add(m); edges.add(e);
if (Config WEIGHTED) { e.weight = new Weight(); }
return e;

Edge add(Node n, Node m, Weight w) {
if (1Config. WEIGHTED) { throw new RuntimeException(); }
Edge e = new Edge(n, m);
nodes.add(n); nodes.add(m); edges.add(e);
e.weight = w;
return e;

Idea:
parameters control configuration options

global parameters vs. immutable global
parameters

if immutable, no possibility to change
after delivery

‘modern’ approach: feature toggles (e.g.
with Kubernetes)

27

Method Parameters

public class Graph { expose parameters in methods of
boolean weighted; . _F
boolean colored; interface
Graph(boolean _weighted, boolean _colored) { parameter values passed through
ighted = _weighted; . .
e e method invocations
benefit different instances within
Edge add(Node n, Node m) { i
e = nen Ceiccli ol same code (e.g., graph with and
nodes.add(n); nodes.add(m); edges.add(e); without COLO[‘S)
if (weighted) { e.weight = new Weight(); }
}'em"' e drawback code smell (methods with

public class Edge { many parameterS)

} boolean weighted;
Weight weight;

Edge(Node _a, Node _b, boolean weighted) {
a= _a; b= _b
if (weighted) { weight = new Weight(); }

28

(Object-Oriented Design Patterns)

ideal for reuse and composition:
Template method, Decorator, Abstract Factory

Extension through delegation vs. inheritance
Limitations and drawbacks w.rt. feature combinations

29

Compile-time/Build-time Variability

coarse-grained

30

Build Systems - Example of KConfig

Feature Model with KConfig [linux /arch /x86/Kconfig]

config X86.32 ...
config X86.64 ...

config IA32_.EMULATION
bool "1A32 Emulation”
depends on X86_64
help Include code to run legacy 32-bit programs under a 64-bit
kernel. You should likely enable this, unless you're 100% sure
that you don’t have any 32-bit programs left.

KBuild

[kernel.org]

® a style for writing Makefiles in Linux

® defines goals with Make variables
® obj-y: static linkage (= include feature)
® obj-m: dynamic linkage (= as module)
® obj-: no linkage (= exclude feature)

® full power of Make = hard to comprehend

Feature Mapping with KBuild linux/arch /x86,/Kbuild]

link these subdirectories statically:
obj-y += entry/ # entry routines

obj-y += realmode/ # 16-bit support
obj-y += kernel/ # x86 kernel

obj-y += mm/ # memory management

link these depending on a configuration option:
obj-$(CONFIG_IA32_EMULATION) += ia32/
obj-$(CONFIG_XEN) += xen/ # paravirtualization

the KConfig feature model can even be overridden:
obj-$(subst m,y,$(CONFIG_.HYPERV)) += hyperv/

Recurse into Subsystems [t h /x86/ia32/Makefile]

ia32 kernel emulation subsystem
obj-$(CONFIG_IA32_EMULATION) := ia32signal.o
audit-class-$(CONFIG_AUDIT) := audit.o

IA32_EMULATION and AUDIT required for audit.o:
obj-$(CONFIG_IA32_.EMULATION) += $(audit-class-y)

[SPL lecture, chapter 5, slide 13]

31

https://github.com/SoftVarE-Group/Slides-of-the-SPL-Course/blob/main/2024wt/05-conditional.pdf

Build Systems for SPLs

How to? in- and exclusion of entire files or
1 model variability in feature model subsystems
2 in- and exclude files based on — coarse-grained modularity
featgre selection . . Drawback
3 provide feature selection at build
time hard to reconfigure at load- or
runtime

Benefit
compile-time variability
— fast, small binaries
free feature selection coarse-grained: no line-wise in- or
— products generated automatically exclusion of source code

complexity of build scripts
— hard to comprehend and analyze

32

Software Modularization

Modularization:
application of information hiding and data encapsulation to enable

strong, logical connection of inner parts
precisely defined interfaces

Cohesion and Coupling

Cohesion: measures how strong parts of a module work together (intra
communication)
Coupling: measures the complexity of communication between modules

— aim for low coupling and strong cohesion

33

Reasons for Modules

Promises of Modular Implementations
independent development of other modules
easier maintenance (locality of changes)
hide complexity and ease comprehension
stability and reliability through data encapsulation

Typical techniques:
components
(micro-)services
frameworks

34

(Micro)services

(Micro-)Services are “implemented and operated as a small yet independent
system, offering access to its internal logic and data through a well-defined network
interface.” [Jamshidi2018]

architectural pattern based on distributed programming

"cohesive, independent process interacting via messages” [Dragoni2017]
essential: inter-process communication (e.g. through REST API)

inside a microservice different technology stack possible

each service must be manageable by a small team

35

Promises of Microservices

Scalability: small enough to be developed by a small, agile team.
Continuous integration/deployment: deployed independently of each other.
Heterogeneity: each implemented using its own technology stack.

Fault tolerance: crash of single microservice should not lead to crash of entire
system.

Efficiency: Optimized configuration of execution environment for each
microservice.

Modernization: easy replacement by alternative microservice (even
re-implemented from scratch).

36

Microservices in Action -- Jolie

Tailored for microservices and APIs

Jolie is a contract-first programming
language, which puts API design at the
forefront. It supports both synchronous
and asynchronous communication.
Data models are defined by types that
support refinement (in red on the
right), and DTO (Data Transfer Objects)
transformations are transparently
managed by the interpreter.

type GetProfileRequestType {

1d:int

type GetProfileResponseType {
name:string
surname:string

b

email:str:
accounts|[!
n
s
e

ing(regex(".*@.*\\..*"))
0,1 {

ickname:string

ervice url:string
nabled:bool

¥
ranking:int(ranges([1,5]))

type SendMessageRequestType {

1

id:int
message: st

tring(length([0,250]))

interface Profilelnterface {
requestResponse: nchron

onewWay:

}

getProfil

sendMessaf

¢(GetProfileRequestType)(GetProfileResponseType)

ge(SendMessageRequestType)

[Jolie Website]

37

https://www.jolie-lang.org/

Microservices in Action -- Jolie

Program your microservice system Deploy it in a single machine
:: > »(:
¢ e
Deploy it in two different machines Deploy it in four different machines

[Jolie Website]

38

https://www.jolie-lang.org/

Microservices for SPLs

Idea:
each feature is a service
feature selection determines how to compose the services

benefit: 'standardized’ service composition (does not need glue code like for
library composition)

39

Microservices Composition

Orchestration Choreography each service describes
describes an executable (centralized) own task within composition

process combining services

i

40

Framework Principles

Framework and Hotspots
framework = set of classes with an
abstract design
support reuse beyond class-level
open for extension at hotspots
(=interface or abstract class)

Plugin:
extends hot spots with custom
behavior
compiled and deployed separately

Inversion of Control

Your code

You call a A framework
library calls you

Framework

— hollywood principle (we call you)
= pre-planning required

41

Plug-In Loading and Management

Simple Example vs. Reality Plug-In Loader

typical requirements in practice: searches for plugin files in dedicated
arbitrarily many plug-ins to be directory
registered at one extension point tests whether file implements a
single plug-in may extend several plugin

extension points

plug-in may add new extension
points to the framework (framework

of framgworks))) Plug-In Manager GUI and/or console
ptgg—ln |mplementatlon provided by interface for plug-in administration and
third parties configuration

checks dependencies
initializes plug-ins

42

Frameworks for SPL

Idea
each plugin implements a feature
feature selection determines which plugins to load and register

Benefit Drawback
no glue code needed preplanning necessary

no service composition needed coarse-grained

43

Frameworks in Action

public class Graph {
private List < GraphPlugin> plugins = new ArrayList <GraphPlugin>();

public void registerPlugin(GraphPlugin p){ public interface GraphPlugin {
plugins.add(p); public void aboutToAdd(Node n, Color c);
public void aboutToAdd(Edge e, Weight w);
public void addNode(int id, Color c){ public void aboutToPrint(Node n);
Node n = new Node(id); public void aboutToPrint(Edge e);
notifyAdd(n, c);)
nodes.add(n);

}
public void print() {

for (Node n : nodes) { public class ColorPlugin implements GraphPlugin {
notifyPrint(n); private Map < Node, Color>> map = new HashMap < Node, Color>();
/] -
} public void aboutToAdd(Node n, Color c) {
/] map.put(n, c);
} }
private void notifyAdd(Node n, Color c) { e)
for (GraphPlugin p : plugins) { public void al?outToAdd(Edge e, Weight w) {
p.aboutToAdd(n, c);) // do nothing
private void notifyPrint(Node n) { public void aboutToPrint(Node n) {
for (GraphPlugin p : plugins) { Color ¢ = map.get(n);
p-aboutToPrint(n); N Color.setDisplayColor(c);
/) / public void aboutToPrint(Edge €) {
} // do nothing
}
[SPL lecture, Chapter 6, slide 39]

44

https://github.com/SoftVarE-Group/Slides-of-the-SPL-Course/blob/main/2023st/06-modular.pdf

Points to Consider

many empty methods in ColorPlugin
all plugins considered by registry before printing

General challenge: cross-cutting concerns
if implemented as plugin

large interfaces with many irrelevant parts
large communication overhead between plugins and framework
Preplanning problem

if not familiar with domain: do we know color and weight needed in plugin
interface?

hard identification and anticipation of relevant hot spots
— excellent domain knowledge and expertise required

45

Summary

Services: Frameworks
small, exchangeable units large units
dedicated composition mechanism Eg)r(nposfuon mechanism out-of-the

required
information hiding

coarse-grained
pre-planning (no ad-hoc variability)

information hiding

coarse-grained, but adhoc variability

46

Reflection

If you had to implement a flexible API for randomized optimization algorithms which
variability mechanism would you use?

What are optional and what are mandatory features?

47

Summary of Approaches

binding time technology representation
variability | compile loadtime | language tool annota- composi-
approach time / runtime tion tion
runtime X X X
parameter
design X X X
patterns
build sys- X X X
tems
services X X X X
binding time: when is the variability fixed to realize a specific product?
technology: is the variability mechanism enabled by the language or only by the tool?

representation:

how are the features represented, where are they located?

48

If you'd like to learn more about SPLE or SE

check out the

Feature-Oriented entire opensource SPL lecture
Software
Product Lines SPL community activities @ SPLC net
FOSD community activities @ FOSD
website
reach out:

[Apet2013] greiner@imada.sdu.dk

49

https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines
https://splc.net/
http://fosd.net/
http://fosd.net/

References

[Apel2013] Sven Apel, Don S. Batory, Christian Kastner, Gunter Saake,
2013
Feature-Oriented Software Product Lines - Concepts and
Implementation. Springer 2013, ISBN 978-3-642-37520-0,
pp. 1-XVI, 1-315

[Greiner2022] Sandra Greiner, 2022
Reuse of Model Transformations for Propagating Variability
Annotations in Annotative Software Product Lines. University
of Bayreuth, Germany

[Jamshidi2018] P Jamshidi, C Pahl, NC Mendonga, J Lewis, S Tilkov
Microservices: The journey so far and challenges ahead. IEEE
Software 35 (3), 24-35

[Dragoni2017] N Dragoni, S Giallorenzo, AL Lafuente, M Mazzara, F Montesi,
R Mustafin, L. Safina
Microservices: Yesterday, Today, and Tomorrow.

50

Acknowledgments

This presentation is based upon work from COST Action Ran-
domised Optimisation Algorithms Research Network (ROAR-NET),

CA22137, supported by COST (European Cooperation in Science and
Technology).

COST (European Cooperation in Science and Technology) is a funding
agency for research and innovation networks. Our Actions help connect
research initiatives across Europe and enable scientists to grow their ideas

by sharing them with their peers. This boosts their research, career and in-
novation.

’) Funded by
(1 the European Union

EUROPEAN COOPERATION
IN SCIENCE & TECHNOLOGY

51

	Introduction and Motivation
	Motivation

	Software Product Line Engineering Concepts
	Mass Production
	Mass Customization
	Features and Products of a Domain
	Software Product Line
	Product-Line Engineering

	Variability Implementation Techniques
	Runtime Variability
	Modular Methods
	Plug-In Loading and Management

