
1

COST Action CA22137 2023-2027

SoftwareDevelopment
forReuse

1st ROAR-NET Training School – Lecture

Sandra Greiner
greiner@imada.sdu.dk

mailto:greiner@imada.sdu.dk


2

Preclaimer

This lecture...

does NOT involve mathematics

reuses some material from an open-source course on SPLE by Thomas Thüm,

Elias Kuiter, and Timo Kehrer

please be interactive, asks questions throughout the lecture

⇒ learn concepts how to reuse software systematically

https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines


3

Motivation: Complex, Configurable Software



4

Complex, Configurable Software which EVOLVES

Marlin (3D printer software)
numpy-lib commit: markdown, tests, C-file, ...



5

Graph Lib - Design & Implementation Sketch

Let’s build a Graph library:

[weighted] [graph2]

What constitutes a Graph?

public class Graph { ... }

public class Edge {
private double weight;
private Node source;
private Node target;

public Edge(...) { ...}
}

public class Node { ... }
public class Color { ... }

https://commons.wikimedia.org/wiki/File:Weighted_Graph.svg
https://www.flickr.com/photos/38075047@N00/6865783139


6

Copy and Adapting Programs (= Software Variants)

public class Graph { ... }

public class Edge {
private double weight;
private Node source;
private Node target;

public Edge(...) { ...}
}

public class Node { ... }
public class Color { ... }

Weighted, Directed,
Colored Graph

public class Graph { ... }

public class Edge {

private Node[] nodes = new Node[2];

public Edge(...) { ...}

}

public class Node { ... }

public class Color { ... }

Colored Graph

public class Graph { ... }

public class Edge {

private Node source;

private Node target;

public Edge(...) { ...}

}

public class Node { ... }

Directed Graph

works and pays off for few variants

increasingly complex with evolution

how can we do better?



7

Complex Configurable Software, which EVOLVES

use abstractions and organized reuse

[linux] [wrangling]

https://www.flickr.com/photos/28648431@N00/59445744
https://www.flickr.com/photos/38075047@N00/6865783139


8

Concepts to support organized reuse

(and introduce software product line engineering)



9

Mass Production

Mass Production

result of industrialization

goods produced from standardized

parts

→ reduced cost, increased

productivity, improved quality

but: (almost) no individualized

product

Example Principle: One Size Fits All

e.g., swiss-army knife

Mass Produced Software?

→ software satisfying the needs of most

customers

→ but then, customers

miss desired functionality

overwhelmed with not needed

functionality (e.g., contemporary office or

graphics programs).

Often this generality makes software

complex, slow, and buggy.

[wollmilchsau] [army knife]

https://en.wiktionary.org/wiki/eierlegende_Wollmilchsau#/media/File:Wollmilchsau.png
https://en.wikipedia.org/wiki/Swiss_Army_knife#/media/File:Wenger_EvoGrip_S17.JPG


10

Mass Customization

Mass Customization

= mass production + customization

individual, customized goods at cost

similar to mass production

Example: Car Configuration

Car Production

Other Domains

computers and laptops, electronics,

food, medicine, clothing, bikes …,

software?



11

Mass Customization for Software?

Mass Customization for Software?

customization: individually developed software products

mass production: standard software developed once for millions or billions of

users (e.g., Whatsapp messenger)

mass customization: software product lines

Why Software Product Lines?

resource limitations: memory,

performance, energy

different hardware, or laws

Goal:

avoid expensive customization

how is software normally developed?



12

What is a Feature?

Feature

A feature is a characteristic or

end-user-visible behavior of a software

system.

Features in Software Product Lines

In SPLE, features

specify and communicate

commonalities and differences of

products between stakeholders

guide the structure, reuse, and

variation throughout software life

cycle.



13

Recap: The Software Life Cycle

requirements

specification

design

implementation

(module test)

integration

(system test)

maintenance

time

maintenance

development



14

What is a Product?

Product

A product of a product line is specified by

a valid feature selection (a subset of the

features of the product line).

A feature selection is valid if and only if it

fulfills all feature dependencies.

Terminology

here: product == product variant ==

variant

software product: a product only of

software

Note

software is more than source code: e.g.,

requirements, models, source code,

tests, documentation; we focus on

source code



15

What is a Domain?

Domain

A domain is an area of knowledge:

scoped to maximally satisfy its

stakeholders’ requirements,

including a set of concepts and

terminology understood by

practitioners in that area

including the knowledge of how to

build (parts of) software systems in

that area.

Features of a Domain

a feature is a domain abstraction

identification of features in a domain

requires domain expertise

later: select features for a product

line?



16

Software Product Lines

A software product line is

a set of software-intensive systems that (aka. products or variants)

share a common, managed set of features

(common set; not all products have all features in common)

satisfy specific needs of a particular market segment or mission (aka. domain)

are developed from a common set of core assets in a prescribed way. (aka.

planned, structured reuse)

Software Engineering Institute, Carnegie Mellon University

https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=513819


17

SPLE

Product-Line Engineering

Software product-line engineering is a paradigm to develop software applications

(software-intensive systems and software products) using software platforms and

mass customization.

Promises of Product Lines

tailor-made

reduced costs

improved quality

reduced time-to-market



18

SPLE

Idea of Product-Line Engineering

Reduced effort per product resulting

from up-front investment into a product

line:
Product-Line vs Single-System Engineering

product line vs single system

0 2 4 6 8 10 12
Number of products

E
ffo

rt

What if products are possibly added in future?

Thomas Thüm VariantSync - Automating the Synchronization of Software Variants Slide 3

Single-System Engineering

classical software development (of

single product);

not considered as product-line

engineering



19

Summary - Introduction

Lessons Learned

mass customization = mass production + customization

software product line

software product line engineering

features, products, domains

Interaction

Which examples of (software) product lines are you aware of?

Where have you experienced copying and pasting source code and thought does

that work more systematically?

Exemplify the difference between feature, product, domain, and product line



20

Software Product Line Engineering Process



21

Software Product Line Engineering Process

product (incl. 

validation& verifaction)

variability 

model

realization artifacts

(source code, models, ...)

domain

knowledge

customer

needs

mapping

feature

selection

new
requirements

product

features common implementation

artifacts

domain implementation

product derivation

product-specific

requirements

requirements analysis

domain analysis

solution spaceproblem space

d
o
m

a
in

 
e
n
g

in
e
e
ri

n
g

a
p

p
lic

a
ti

o
n
 

e
n
g

in
e
e
ri

n
g

[Greiner 2022] based on [Apel 2013]

principles of organized reuse and

variability;

implemented in a shared platform

feature model to describe the

configuration space

variability mechanism to realize the

platform



22

SPLE Process: Graph Library contd.

public class Graph { ... }

public class Edge {
private double weight;
private Node source;
private Node target;

public Edge(...) { ...}
}

public class Node { ... }
public class Color { ... }

superimposition of variants

feature model

public class Graph { ... }

public class Edge {

// #ifdef Weighted

private double weight;

// #endif

// #ifdef Directed

private Node source;

private Node target;

// #elif

private Node[] nodes = new Node[2];

// #endif

public Edge(...) { ...}

}

public class Node { ... }

// #ifdef Colored

public class Color { ... }

// #endif

annotated superimposition

of variants



23

Product Derivation

public class Graph { ... }

public class Edge {

// #ifdef Weighted

private double weight;

// #endif

// #ifdef Directed

private Node source;

private Node target;

// #elif

private Node[] nodes = new Node[2];

// #endif

public Edge(...) { ...}

}

public class Node { ... }

// #ifdef Colored

public class Color { ... }

// #endif

annotated superimposition

filter

G=true
N=true
E=true
C=false
W=true
D=false

public class Graph { ... }

public class Edge {

private double weight;

private Node[] nodes = new Node[2];

public Edge(...) { ...}

}

public class Node { ... }

single variant (product)



24

Classification

SPLE approaches

language-
based

tool-driventechnology

load-time

annotative

binding

time

implementation

compile-time

run-time

uniformity
quality
criteriafeature

traceability

granularity

proactive extractive

engineering

transformational

compositional

variability

implementation

reactive

information hiding

product

generation

positive variability negative variability

separation of 
concerns

pre-planning
effort

based on [Greiner2022]



25

Classification

Implementation Criteria:

binding time: runtime vs compile-time vs load-time

technology: tool-driven, language-based

technique: annotative, transformational, compositional

Quality criteria:

granularity

uniformity

feature traceability

information hiding

separation of concerns

pre-planning effort



26

Runtime Variability



27

(Boolean) Variables

Idea:

parameters control configuration options

global parameters vs. immutable global

parameters

if immutable, no possibility to change

after delivery

‘modern’ approach: feature toggles (e.g.

with Kubernetes)



28

Method Parameters

expose parameters in methods of

interface

parameter values passed through

method invocations

benefit different instances within

same code (e.g., graph with and

without colors)

drawback code smell (methods with

many parameters)



29

(Object-Oriented Design Patterns)

ideal for reuse and composition:

Template method, Decorator, Abstract Factory

Extension through delegation vs. inheritance

Limitations and drawbacks w.r.t. feature combinations



30

Compile-time/Build-time Variability

–
coarse-grained



31

Build Systems - Example of KConfig

[SPL lecture, chapter 5, slide 13]

https://github.com/SoftVarE-Group/Slides-of-the-SPL-Course/blob/main/2024wt/05-conditional.pdf


32

Build Systems for SPLs

How to?

1 model variability in feature model

2 in- and exclude files based on

feature selection

3 provide feature selection at build

time

Benefit

compile-time variability

→ fast, small binaries

free feature selection

→ products generated automatically

in- and exclusion of entire files or

subsystems

→ coarse-grained modularity

Drawback

hard to reconfigure at load- or

runtime

complexity of build scripts

→ hard to comprehend and analyze

coarse-grained: no line-wise in- or

exclusion of source code



33

Software Modularization

Modularization:

application of information hiding and data encapsulation to enable

strong, logical connection of inner parts

precisely defined interfaces

Cohesion and Coupling

Cohesion: measures how strong parts of a module work together (intra

communication)

Coupling: measures the complexity of communication between modules

→ aim for low coupling and strong cohesion



34

Reasons for Modules

Promises of Modular Implementations

independent development of other modules

easier maintenance (locality of changes)

hide complexity and ease comprehension

stability and reliability through data encapsulation

Typical techniques:

components

(micro-)services

frameworks



35

(Micro)services

(Micro-)Services are “implemented and operated as a small yet independent

system, offering access to its internal logic and data through a well-defined network

interface.” [Jamshidi2018]

architectural pattern based on distributed programming

”cohesive, independent process interacting via messages” [Dragoni2017]
essential: inter-process communication (e.g. through REST API)

inside a microservice different technology stack possible

each service must be manageable by a small team



36

Promises of Microservices

Scalability: small enough to be developed by a small, agile team.

Continuous integration/deployment: deployed independently of each other.

Heterogeneity: each implemented using its own technology stack.

Fault tolerance: crash of single microservice should not lead to crash of entire

system.

Efficiency: Optimized configuration of execution environment for each

microservice.

Modernization: easy replacement by alternative microservice (even

re-implemented from scratch).



37

Microservices in Action -- Jolie

[Jolie Website]

https://www.jolie-lang.org/


38

Microservices in Action -- Jolie

[Jolie Website]

https://www.jolie-lang.org/


39

Microservices for SPLs

Idea:

each feature is a service

feature selection determines how to compose the services

benefit: ’standardized’ service composition (does not need glue code like for

library composition)



40

Microservices Composition

Orchestration

describes an executable (centralized)

process combining services

Choreography each service describes

own task within composition



41

Framework Principles

Framework and Hotspots

framework = set of classes with an

abstract design

support reuse beyond class-level

open for extension at hotspots

(=interface or abstract class)

Plugin:

extends hot spots with custom

behavior

compiled and deployed separately

Inversion of Control

→ hollywood principle (we call you)

⇒ pre-planning required



42

Plug-In Loading and Management

Simple Example vs. Reality

typical requirements in practice:

arbitrarily many plug-ins to be

registered at one extension point

single plug-in may extend several

extension points

plug-in may add new extension

points to the framework (framework

of frameworks)

plug-in implementation provided by

third parties

Plug-In Loader

searches for plugin files in dedicated

directory

tests whether file implements a

plugin

checks dependencies

initializes plug-ins

Plug-In Manager GUI and/or console

interface for plug-in administration and

configuration



43

Frameworks for SPL

Idea

each plugin implements a feature

feature selection determines which plugins to load and register

Benefit

no glue code needed

no service composition needed

Drawback

preplanning necessary

coarse-grained



44

Frameworks in Action

[SPL lecture, Chapter 6, slide 39]

https://github.com/SoftVarE-Group/Slides-of-the-SPL-Course/blob/main/2023st/06-modular.pdf


45

Points to Consider

many empty methods in ColorPlugin
all plugins considered by registry before printing

General challenge: cross-cutting concerns

if implemented as plugin

large interfaces with many irrelevant parts

large communication overhead between plugins and framework

Preplanning problem

if not familiar with domain: do we know color and weight needed in plugin

interface?

hard identification and anticipation of relevant hot spots

→ excellent domain knowledge and expertise required



46

Summary

Services:

small, exchangeable units

dedicated composition mechanism

required

information hiding

coarse-grained, but adhoc variability

Frameworks

large units

composition mechanism out-of-the

box

information hiding

coarse-grained

pre-planning (no ad-hoc variability)



47

Reflection

If you had to implement a flexible API for randomized optimization algorithms which

variability mechanism would you use?

What are optional and what are mandatory features?



48

Summary of Approaches

binding time technology representation

variability

approach

compile

time

loadtime

/ runtime

language tool annota-

tion

composi-

tion

runtime

parameter

x x x

design

patterns

x x x

build sys-

tems

x x x

services x x x x

binding time: when is the variability fixed to realize a specific product?

technology: is the variability mechanism enabled by the language or only by the tool?

representation: how are the features represented, where are they located?



49

If you'd like to learn more about SPLE or SE

[Apel2013]

check out the

entire opensource SPL lecture

SPL community activities @ SPLC net

FOSD community activities @ FOSD

website

reach out:

greiner@imada.sdu.dk

https://github.com/SoftVarE-Group/Course-on-Software-Product-Lines
https://splc.net/
http://fosd.net/
http://fosd.net/


50

References

[Apel2013] Sven Apel, Don S. Batory, Christian Kästner, Gunter Saake,

2013

Feature-Oriented Software Product Lines - Concepts and

Implementation. Springer 2013, ISBN 978-3-642-37520-0,

pp. I-XVI, 1-315

[Greiner2022] Sandra Greiner, 2022

Reuse of Model Transformations for Propagating Variability

Annotations in Annotative Software Product Lines. University

of Bayreuth, Germany

[Jamshidi2018] P Jamshidi, C Pahl, NC Mendonça, J Lewis, S Tilkov

Microservices: The journey so far and challenges ahead. IEEE

Software 35 (3), 24-35

[Dragoni2017] N Dragoni, S Giallorenzo, AL Lafuente, M Mazzara, F Montesi,

R Mustafin, L. Safina

Microservices: Yesterday, Today, and Tomorrow.



51

Acknowledgments

This presentation is based upon work from COST Action Ran-

domised Optimisation Algorithms Research Network (ROAR-NET),

CA22137, supported by COST (European Cooperation in Science and

Technology).

COST (European Cooperation in Science and Technology) is a funding

agency for research and innovation networks. Our Actions help connect

research initiatives across Europe and enable scientists to grow their ideas

by sharing them with their peers. This boosts their research, career and in-

novation.


	Introduction and Motivation
	Motivation

	Software Product Line Engineering Concepts
	Mass Production
	Mass Customization
	Features and Products of a Domain
	Software Product Line
	Product-Line Engineering

	Variability Implementation Techniques
	Runtime Variability
	Modular Methods
	Plug-In Loading and Management


