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Core Concepts

• Problem: The real-world situation to be solved
• Model: A formal (e.g., mathematical) abstraction of the problem
• Viewpoint: A particular way of looking at the model
• Representation: How solutions are encoded within a viewpoint
• Search Space: All possible encoded solutions

Real
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sentation

Search
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Core Concepts: exemplified

• Problem: The real-world situation or question to be solved.
• Example: Find the shortest route visiting all cities.

• Model: An abstraction of the problem, often mathematical.
• Example: Graph G = (V,E) with edge weights, find Hamiltonian cycle of
minimum total weight.

• Representation (Encoding): How a candidate solution to the model is
stored and manipulated by the algorithm.
• Example: The sequence of visited cities (i.e., a permutation of city indices
for TSP).

• Search Space (Solution Space): The set of all possible candidate
solutions that the algorithm can explore, defined by the chosen
representation.
• Example: All permutations of n cities, i.e., n! possible solutions.
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Representation defines the Search Space

• The representation dictates the structure and size of the search space.
• Different representations of the same problem can lead to radically
different search spaces.
• This impacts:

• The number of candidate solutions (size).
• The “distance” between solutions (neighborhood).
• The presence and structure of local optima (search landscape).
• The effectiveness of search operators (hardness).
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Building Blocks

Key components of a representation:

• Decision Variables: The controllable inputs that define the solution
space.
• Constraints: Conditions that solutions must satisfy to be valid.
• Objective Function: Evaluates the quality of candidate solutions.

Decision
VariablesConstraints Objective

Function

restrict evaluates
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Decision Variables

Decision Variables

• Represent the choices or decisions that can be made.
• Their values determine a candidate solution.
• The optimization algorithm searches for the best values for these
variables.
• They define the dimensions of the search space.

Example: In a production planning problem, decision variables might be:
• xi = quantity of product i to produce;
• yj = whether to open facility j (binary);
• zijk = amount shipped from facility i to customer j using transport k.
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Types of Decision Variables (1/2)

Binary Variables
• Domain: {0, 1}
• Represent yes/no decisions
• Examples: Select item, open
facility, assign task

Integer Variables
• Domain: Z or {a,a+ 1, . . . ,b}
• Discrete quantities or choices
• Examples: Number of units,
worker assignments

Categorical Variables
• Domain: Finite set of categories
• Unordered discrete choices
• Examples: Color, method, route
type

Permutation Variables
• Domain: Permutations of
{1, 2, . . . ,n}
• Ordering/sequencing decisions
• Examples: Task sequence, tour
order



9

Types of Decision Variables (2/2)

Continuous Variables

• Domain: R or [a,b] ⊂ R
• Real-valued quantities
• Examples: Flow rates,
coordinates, weights

Set Variables

• Domain: Subsets of a given set
• Selection of multiple items
• Examples: Feature selection,
coalition formation

The type of decision variables heavily influences the choice of operators
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Decision Variables: Examples by Problem Type
Problem Decision Variables Variable Type
Knapsack xi = 1 if item i selected Binary
TSP π = permutation of cities Permutation
Portfolio Optimization wi = weight of asset i Continuous
Job Scheduling sj = start time of job j Continuous/Integer
Facility Location yi = 1 if facility i opened Binary

xij = flow from i to j Continuous
Vehicle Routing Route assignment for each

vehicle
Permutation/Set

Neural Network Design wij = weight of connection Continuous
Architecture choices Categorical/Integer

Course Timetabling (t, r) = time and room for
course

Categorical

Most real problems involve mixed variable types, requiring hybrid
representations.
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Decision Variable Dependencies and Constraints

Decision variables often have complex relationships:

• Independent Variables: Can be set without affecting others
• Example: Investment amounts in different sectors (if no budget constraint)

• Dependent Variables: Value depends on other variables
• Example: Total cost depends on individual quantities produced

• Conditional Dependencies: Constraints only apply under certain
conditions
• Example: If facility is opened, then capacity constraints apply

• Precedence Dependencies: Some decisions must precede others
• Example: Cannot schedule task B before deciding when A has been
completed

Impact on Representation
Dependencies affect how we can encode and modify solutions
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Example: Production Planning Problem

Production Planning Problem:
• Produce n products using m resources
• Binary decisions: Which products to produce
• Integer decisions: Batch sizes
• Continuous decisions: Resource allocation levels

Decision Variables:
• yi ∈ {0, 1}: 1 if product i is produced
• bi ∈ Z+: Number of batches of product i
• rij ∈ R+: Amount of resource j for product i

Representation Options:
1. Direct: [y1, . . . , yn,b1, . . . ,bn, r11, . . . , rnm]
2. Hierarchical: First decide yi, then bi, finally optimize rij
3. Hybrid: Binary for yi, integer for bi, real for rij

Dependencies: bi = 0 and rij = 0 if yi = 0 (conditional constraints)
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From Problem Variables to Search Representation

Bridging the Problem Definition and Search Process:

Decision
Variables Encoding Represen-

tation

Search
Operators

model translate

constrains guides
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Decision Variables Representation Questions

• What is the number, type, and domain of problem variables?
• Are variables continuous, discrete, categorical, or mixed?
• Which variables are interdependent or constrained?
• How should variables be grouped, transformed, or decomposed?
• How do variable structures affect search effectiveness?

Design Principle
Effective representations preserve meaningful structure and enable efficient
search operations.
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Decision Variables handling (1/2)

Different strategies for handling decision variables:

Direct Encoding
• One element per decision variable
• Natural mapping
• Example: [x1, x2, x3, x4]

Implicit Encoding
• Some variables computed from
others
• Reduce search space
• Example: Priorities →
assignments

Decomposed Encoding
• Separate different variable types
• Specialized operators
• Example: Binary + continuous
parts
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Decision Variables handling (2/2)

Different strategies for handling decision variables:

Grouped Encoding

• Group related variables by
structure/dependency
• Exploit natural problem
decomposition
• Example: Vehicle routing with 3
vehicles, each group represents a
vehicle’s route
• Encoding:
[[r11, r12, r13], [r21, r22], [r31, r32, r33, r34]]
• Operators can work within/across
groups

Hierarchical Encoding
• High-level decisions first
• Conditional sub-decisions
• Example: Select facility, then
assign customers

Choice depends on:
Variable relationships, constraint structure, algorithm requirements.
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Constraints (1/2)

Constraints are conditions that solutions must satisfy to be considered valid.

• They can be hard (must be satisfied) or soft (preferable but not
mandatory).
• They define the boundaries of the search space.
• They can be linear, nonlinear, discrete, continuous, etc.

Define feasibility - they separate valid from invalid solutions
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Constraints (2/2)

Different representations handle constraints differently:

• Implicit constraint handling: Built into the
representation
• Explicit constraint handling: Checked separately
(penalties, repairs)
• Hybrid approaches: Some constraints implicit,
others explicit

Representation

Constraint 1 Constraint 2

Constraint 3

implicit explicit

hybrid

Design Principle
The more constraints you can build into the representation, the more efficient
your search becomes.
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Example: The N-Queens Problem

• Problem: Place N chess queens
on an N× N chessboard so that
no two queens attack each other.
• Queens attack horizontally,
vertically, and diagonally.
• A classic constraint satisfaction
problem often solved with
optimization techniques (i.e.,
minimize the number of attacking
pairs).

q

q

q

q

q

q

q

q

An 8× 8 chessboard

Key Questions
How do we represent a potential solution (a placement of N queens)?
How does this representation affect the search for valid solutions?
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N-Queens: Representation Viewpoint 1 (Coordinates)

• Idea: Represent each queen’s position by its (row, column) coordinates.
• A solution is a list of N coordinate pairs: [(r1, c1), (r2, c2), . . . , (rN, cN)].
• For an N× N board:

• Each ri can be from 1 to N.
• Each ci can be from 1 to N.

• Search Space Size: C(N2,N) possible solutions (choosing N distinct
coordinates among N2 possibilities).
• Challenges:

• Extremely large search space.
• Most solutions are invalid (multiple queens in same row/col/diag).
• Example for N = 4: C(16, 4) = 1, 280 solutions.
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N-Queens: Representation Viewpoint 2 (Fixed Column)

• Observation: A valid N-Queens solution must have exactly one queen
per column.
• Idea: Fix the columns (e.g., 1, 2, . . . ,N) and just decide the row for each
queen.
• A solution is a list of N row indices: [r1, r2, . . . , rN], where ri is the row of
the queen in column i.
• Each ri can be from 1 to N.
• Search Space Size: NN possible solutions.
• Challenges:

• Still many invalid solutions (queens attack horizontally or diagonally).
• Significantly smaller than Viewpoint 1.
• Example for N = 4: 44 = 256 solutions.
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N-Queens: Representation Viewpoint 3 (Permutation)

• Observation: A valid N-Queens solution must have exactly one queen
per row AND one queen per column.
• Idea: A queen in column i is placed in row pi, where (p1,p2, . . . ,pN) is a
permutation of (1, 2, . . . ,N).
• This implicitly handles the ”one queen per row” and ”one queen per
column” constraints.
• Search Space Size: N! possible solutions.
• Challenges:

• Only diagonal attacks need to be checked.
• Even smaller search space, but solutions still might be invalid.
• Example for N = 4: 4! = 24 solutions.
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N-Queens: Comparing Search Spaces

Representation Encoding Search Space
Size

Constraints
Checks

Coordinates [(r1, c1), . . . , (rN, cN)]C(N2,N) Row, Col, Diago-
nal

Fixed Column [r1, r2, . . . , rN] NN Row, Diagonal
Permutation [p1,p2, . . . ,pN] N! Diagonal Only

• The choice of representation dramatically changes the size and
characteristics of the search space.
• A “smarter” representation incorporates more problem constraints
implicitly.
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Example: Nurse Scheduling Problem

• Problem: Four (head) nurses assigned to eight-hour shifts over a week
• Shifts: Shift 1 (day), Shifts 2 and 3 (night)
• Constraints:

1. Every shift is assigned exactly one nurse
2. Each nurse works at most one shift per day
3. Each nurse works at least five days a week (the others should be days off)
4. No shift can be staffed by more than two different nurses in a week
5. A nurse working night shifts (2 or 3) must do so at least two consecutive

days
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Viewpoint 1: Assignment Worker

• Idea: Directly represent which nurse is assigned to which shift-day
combination
• Representation: Xsd where Xsd = n if nurse n works shift s on day d
• Search Space: 3× 7 variables, 3× 7× 4 = 84 possible assignments
• Constraint Handling:

• Constraint 1: one nurse per shift (implicit)
• Constraint 2-5: (explicit, to check)

• Challenges: Most random assignments violate constraints

Sun Mon Tue Wed Thu Fri Sat
Shift1 A B A A A A A
Shift2 C C C B B B B
Shift3 D D D D C C D
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Viewpoint 2: Shift Sequence to Nurse

• Idea: Represent each assignment to a nurse for the week as sequence of
shifts
• Representation: Three sequences, one per nurse: SA,SB,SC,SD
• Each sequence: [s1, s2, . . . , s7] where si is the shift assigned for day i
• Search Space: 47 = 16, 384 possible sequences (each day can be one of 3
shifts + day off ⊥)
• Constraint Handling:

• Constraint 1: (explicit, to check)
• Constraint 2: one shift per day (implicit)
• Constraint 3-5: (easier to check)

Sun Mon Tue Wed Thu Fri Sat
Worker A 1 ⊥ 1 1 1 1 1
Worker B ⊥ 1 ⊥ 2 2 2 2
Worker C 2 2 2 ⊥ 3 3 ⊥
Worker D 3 3 3 3 ⊥ ⊥ 3
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Comparing the Two Viewpoints

Aspect Assignment-Based Sequence-Based
Search Space Size 84 16, 384

Constraint 1 (One nurse per shift) Explicit Implicit
Constraint 2 (One shift per day) Implicit Explicit
Constraint 3-5 Complex Simple

Synchronization (channeling): The two viewpoints should be synchronized.
Operators in the assignment-based representation should modify the
sequences in the sequence-based representation and vice versa.
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Example: Portfolio Optimization

Problem: Allocate resources across multiple assets maximizing return while
minimizing risk.
• Objective: Maximize expected return while minimizing risk
• Variables: Asset weights wi (proportions of total capital)
• Objective Function (risk minimization):

∑n
i=1

∑n
j=1 σijwiwj, where σij is the

covariance between assets i and j (variance when i = j).
• Constraints:

1. Return constraint, e.g.,
∑n

i=1 riwi ≥ R, where ri is the expected return of
asset i.

2. Total investment equals available capital, i.e.,
∑n

i=1wi = 1
3. Individual asset weights within bounds, e.g., ϵi ≤ wi ≤ δi (or wi = 0 for no

investment).
4. Number of assets must be between minimum and maximum limits, e.g.,

nmin ≤ |{wi|wi > 0, i = 1, . . . ,n}| ≤ nmax.
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Portfolio Optimization: Decomposition

Strategy:
• Subproblem 1: Asset selection (which assets to include)
• Subproblem 2: Weight allocation (how much to invest in each selected
asset)

Representations:
• For asset selection: Binary vector [s1, s2, ..., sn] where si = 1 if asset i is
selected.
• For weight allocation: Real-valued vector [wi1 ,wi2 , ...,wik ] for weights of
selected k assets.

Selecting assets through the binary vector eases the satisfaction of the
cardinality constraints (i.e., nmin ≤ k ≤ nmax).
Once the asssets are selected the weights can be allocated to the selected
assets only, considerably reducing the search space of the (quadratic
programming) weight allocation problem.
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Constraint Handling Strategies

Penalties
• Add cost for constraint
violations
• Allows exploration of
infeasible regions
• Risk: Algorithm might
converge to infeasible
solutions

Repair
• Fix violated constraints after
operator application
• Ensures all solutions are
feasible
• Risk: May be computationally
expensive

Specialized Operators
• Design operators that preserve
feasibility
• Guarantees feasible offspring
• Risk: Limited exploration
capability

Decoder Functions
• Indirect representation with
constraint-aware decoder
• Can handle complex
constraints elegantly
• Risk: Many-to-one mapping
inefficiency
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Objective Function (1/2)

Objective Function evaluates the quality or fitness of candidate solutions

• Provides a mechanism for comparing different solutions
• Guides the search process toward better solutions
• May incorporate constraint violations through penalties or other
mechanisms
• Defines what constitutes “improvement” in the search space

Types of Objective Functions:
• Single-objective: f(x)→ R (minimize cost, maximize profit)
• Multi-objective: f(x)→ Rk (minimize cost AND time)
• Multi-criteria: Hierarchical or lexicographic preferences
• Constraint-augmented: f(x) +

∑
penalty(violations)
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Objective Function (2/2)

Handling Incomplete Solutions:
• Partial evaluation: Assess quality of incomplete solutions during
construction
• Lower bound estimation: Predict best possible completion of partial
solution
• Heuristic completion: Use fast heuristics to complete partial solutions
for evaluation

The objective function shapes the fitness landscape that the algorithm
explores



33

Symmetry and Redundancy in Representations

Symmetry: Multiple different encodings represent the same solution
Redundancy: Search space contains equivalent or duplicate solutions

Examples of Symmetry:
• TSP: Tours [1, 2, 3, 4] and [4, 3, 2, 1]
represent the same cycle
• Graph Coloring: Node
permutations with same color
pattern
• Set Partitioning: Different
orderings of the same partition
• Vehicle Routing: Different
vehicle-route assignments for
identical solutions

Impact on Search:
• Wasted computational effort
• Slower convergence
• Difficulty comparing solutions
• Larger effective search space
• Population diversity issues
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Strategies to Handle Symmetry and Redundancy

Representation-Level Solutions:
• Canonical Forms:

• Fix ordering conventions
• TSP: Always start from city 1
• Graph: Use lexicographic
ordering

• Reduced Representations:
• Eliminate redundant variables
• Relative vs. absolute encodings
• Random keys instead of
permutations

• Invariant Encodings:
• Representations insensitive to
symmetries

• Edge-based instead of
node-based

Algorithm-Level Solutions:
• Symmetry Breaking:

• Add constraints to eliminate
symmetries

• Preprocessing to identify
symmetric elements

• Normalization:
• Convert solutions to canonical
form

• During evaluation or
comparison

• Duplicate Detection:
• Hash tables for quick lookup
• Distance-based equivalence
checking
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Example: Handling Tour Symmetries in TSP

TSP Example: Handling Tour Symmetries

Problem Standard Permutation Canonical Form
Multiple equivalent [1, 2, 3, 4], [2, 3, 4, 1], Always start with smallest:
representations [4, 3, 2, 1], [3, 2, 1, 4] [1, 2, 3, 4]

Search space n! possibilities (n−1)!
2 possibilities

reduction (fix start + direction)

Design Principle
Good representations minimize symmetry while preserving solution quality
and operator effectiveness
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Complete vs. Incomplete Solution Representations

Complete Solutions
• All decision variables assigned
• Ready for immediate evaluation
• Often combined with selective
heuristics

Incomplete Solutions
• Partial variable assignments
• Might allow lower bound
estimation
• Often combined with
constructive heuristics
• Requires to represent
unassigned variables

Examples:
• TSP: Full tour [1, 3, 2, 4, 1]
• Knapsack: [1, 0, 1, 1, 0] for all
items
• Graph coloring: Color for every
node [■,■,■,■]

Examples:
• TSP: Partial tour [1, 3, ?, ?, 1]
• Knapsack: Set of selected items
{0, 1}
• Graph Coloring: Partial colors
[■, ?,■, ?]
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ROAR-NET API Representation

• The ROAR-NET API is representation agnostic by design.
• Core types:

• Problem: Encapsulates problem-specific data.
• Solution: Encodes a candidate solution in chosen representation.

• Key operations (random_solution, heuristic_solution, empty_solution,
copy_solution, objective_value) are representation-aware:
• Support direct, indirect, hybrid, or problem-specific encodings.
• Generate, copy, and evaluate solutions using underlying representation logic.

• Algorithmic components interact only with abstract Problem/Solution
interfaces.
• Enables experimentation with different representations using the same
framework.

https://github.com/roar-net/roar-net-api-spec/blob/main/src/types/Problem.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/types/Solution.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/operations/random_solution.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/operations/heuristic_solution.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/operations/empty_solution.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/operations/copy_solution.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/operations/objective_value.md
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ROAR-NET API Representation

• Implementation Note: Solution can include auxiliary data beyond
minimal encoding:
• Examples: Cached objective values, incremental cost updates, auxiliary
structures (adjacency lists, partial schedules).

• Useful for algorithms requiring frequent evaluation or incremental updates.
• API allows transparent updates when solution is modified.

Design Principle
Practical representations combine compact encoding with auxiliary fields for
efficient search and evaluation.
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Direct Representation

• Definition: The decision variables of the problem are directly encoded as
part of the solution structure.
• Each element in the representation directly corresponds to a decision
variable.
• Often intuitive and straightforward.

Examples:
• Binary Encoding: For problems with binary decisions (e.g., Knapsack
Problem, where each item is either included or not).
• Solution: [1, 0, 1, 1, 0] (items 1, 3, 4 are selected)

• Permutation Encoding: For ordering problems (e.g., TSP, Scheduling).
• Solution: [3, 1, 4, 2] (order of tasks/cities)

• Real-Valued Encoding: For continuous optimization problems.
• Solution: [x1, x2, x3] (values for continuous variables)
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Direct Encoding: Pros and Cons

Advantages:
• Simplicity: Easy to implement
and interpret.
• Clarity: Direct correspondence
between variables and
representation.
• Efficiency: Enables fast, generic
search operators.
• Validity: Fewer infeasible
solutions.

Disadvantages:
• Operator Design Overhead:
Requires problem-specific
variation operators (e.g.,
permutation-preserving
crossover).
• Constraint Handling: Difficult to
express complex constraints
without repairs or penalty
functions.
• Limited Structural Insight:
Encodings may ignore latent
structure or relationships among
variables (general also to
indirect).
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Indirect Representation

• Definition: The representation does not directly encode the decision
variables. Instead, it encodes parameters or rules that, when decoded,
generate a candidate solution.
• Requires a decoder function or construction heuristic.
• Often used when direct encoding is difficult or leads to many invalid
solutions.

Examples:
• Priority-based Encoding: For scheduling problems.

• Solution: [0.7, 0.2, 0.9, 0.5] (priorities for tasks).
• Decoder sorts tasks by priority to generate a schedule.

• Rule-based Encoding: For designing complex systems.
• Solution: A set of production rules (e.g., for L-systems in evolutionary art).
• Decoder interprets rules to generate a structure.

• Neural Network Weights: For evolving neural networks.
• Solution: A vector of weights and biases.
• Decoder constructs the network and evaluates its performance.
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Pros and Cons of Indirect Representation

Advantages:
• Generality: Standard operators
(e.g., bit flip, uniform crossover)
can often be used on the
indirect encoding.
• Compactness: May allow for
more compact representations
of complex solutions.
• Exploration of Building Blocks:
Can focus search on “good”
parameters or rules.
• Decoder Flexibility: The
decoder can handle complex
business logic and rules,
simplifying the search.

Disadvantages:
• Decoder Complexity: Requires
a sophisticated and often
computationally expensive
decoder function.
• Epistasis: Complex relationships
between encoded variables and
actual solution components,
making search difficult.
• Redundancy: Different indirect
encodings might decode to the
same solution (neutrality).
• Loss of Locality: Small changes
in the indirect encoding might
lead to large changes in the
decoded solution.
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Direct vs. Indirect Representation
Direct
Repre-

sentation
(e.g., Per-
mutation)

Candidate
Solution
(e.g., Tour)

Direct Mapping

Indirect
Repre-

sentation
(e.g.,

Priorities)

Decoder
Function

Candidate
Solution
(e.g.,

Schedule)

Objective
Function

Incremental
Evaluation

Encoded Input

Decoded Output

Evaluates

Evaluates

Evaluates

Direct and Indirect Representations
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Example: Random Key Encoding for TSP

Problem: Visit all cities exactly once with minimum travel distance.

Direct (Permutation)
• Encoding: [1, 3, 2, 4]
• Meaning: Visit cities in order
1→3→2→4→1
• Constraints: All permutations
valid
• Operators: Need specialized
crossover

Indirect (Random Keys)
• Encoding: [0.7, 0.2, 0.9, 0.1]
• Decoder: Sort by values
• Result: [4, 2, 1, 3] (tour order)
• Operators: Standard real-valued
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Biased Random Key Genetic Algorithms (BRKGA)

Key Concept: Use random keys to encode solutions for complex
combinatorial problems.

Representation: Vector of real numbers in [0, 1]: [k1, k2, . . . , kn].

Advantages:
• Universal representation: Same encoding for many problem types
• Standard operators: Use real-valued crossover and mutation
• Always feasible: Decoder ensures constraint satisfaction
• Problem-independent search: GA doesn’t need problem knowledge

Core Principle
Separate the search mechanism (GA) from problem knowledge (decoder)
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BRKGA: General Decoding Framework

• Priority-Based Decoding:
• Keys represent priorities of
elements

• Sort elements by key values
• Process in priority order using
greedy heuristic

• Threshold-Based Decoding:
• Keys represent selection
probabilities

• Elements with ki > θ are selected
• Threshold θ can be fixed or
adaptive

• Parameter-Based Decoding:
• Keys represent heuristic
parameters

• Use constructive algorithm
with key-derived parameters

• Different keys → different
algorithmic behavior

Design Principle
The decoder should be fast, deterministic and provide good solutions.
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BRKGA Example 1: Job Scheduling

Problem: Schedule n jobs on m machines to minimize makespan.

Representation: n random keys [k1, k2, . . . , kn].
Decoder Algorithm:
1. Sort jobs by key values (descending): kj1 ≥ kj2 ≥ · · · ≥ kjn
2. For each job ji in sorted order:

• Assign ji to machine with earliest completion time (second decision)
• Update machine completion time

Example:
Job Processing Time Random Key Priority Rank Assigned Machine
1 5 0.3 3 M2
2 8 0.9 1 M1
3 3 0.7 2 M2
4 6 0.1 4 M1

Schedule: M1: [Job2, Job4], M2: [Job3, Job1]
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BRKGA Example 2: Set Cover Problem

Problem: Select minimum cost subset of sets that covers all elements.

Representation: Random key ki for each set Si.
Decoder Algorithm:
1. Sort sets by ki·|Si∩U|

costi (greedy ratio with randomization)
2. Initialize uncovered elements U
3. While U ̸= ∅:

• Select highest-ratio set that covers elements in U
• Add set to solution
• Remove covered elements from U

Key Insight
Random keys bias the greedy selection, leading to different solutions.

Keys: [0.8, 0.3, 0.9, 0.2], Ratios: [2.4, 0.9, 1.8, 0.4] (key × coverage/cost), Selection
order: S1,S3,S2,S4
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Binary Chromosomes in Genetic Algorithms

Binary Representation: Solutions encoded as strings of 0s and 1s.

Natural Applications:
• Selection Problems: Each bit indicates inclusion/exclusion
• Feature Selection: Bit i = 1 if feature i is selected
• Knapsack Problems: Bit i = 1 if item i is taken
• Network Design: Bit i = 1 if edge i is included

Advantages:
• Simple, well-understood operators (one-point, uniform crossover)
• Efficient bit manipulation
• Schema theorem analysis applies
• Many theoretical results available

Chromosome: [1, 0, 1, 1, 0, 1, 0, 1], Meaning: Select items {1, 3, 4, 6, 8}, Fitness:
evaluate selected subset
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Binary Decoding Strategies

Direct Binary Decoding:
• Bit i directly corresponds to decision variable xi
• xi = 1 if bit i = 1, else xi = 0

• Simple but may violate constraints

Gray Code Decoding:
• For numerical optimization with binary strings
• Adjacent integers differ by exactly one bit
• Reduces the impact of crossover disruption

Constraint-Based Decoding:
• Repair: Fix violations after direct decoding
• Greedy Construction: Use bits to guide feasible construction
• Priority-Based: Bits represent priorities, then apply decoding algorithm
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Example of Constraint-Based Decoding

Knapsack with repair
1. Direct decode: [1, 1, 1, 1]→ select all items
2. Check capacity: Total weight = 100, capacity = 80 (infeasible)
3. Repair: Remove lowest value/weight ratio items until feasible
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ACO: Indirect Solution Construction

ACO Representation Concept:
• No explicit chromosomes - solutions are constructed incrementally
• Pheromone trails are attached to the “representation” (solution
elements)
• Each ant builds a solution by following probabilistic rules
• Pheromone concentrations encode collective knowledge

Pheromone
Matrix τ

Probabilistic
Construction

Complete
Solution

Pheromone
Update

guides builds

evaluates
modifies
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ACO: Pheromone Trail Representation

Pheromone Trail Structure:

• Components: Problem-specific building blocks (cities, jobs, edges)
• Connections: Pheromone τij on transitions between components
• Meaning: τij = learned desirability of choosing j after i

Construction Rule (general form): pij = [τij]
α·[ηij]β∑

k∈Ni
[τik]α·[ηik]β

, where:

• τij = pheromone trail (learned)
• ηij = heuristic information (problem-specific)
• α, β = parameters balancing exploration vs. exploitation
• Ni = feasible components from state i

Pheromone Update: τij ← (1− ρ)τij +
∑

k∆τ kij , where ρ = evaporation rate, ∆τ kij
= pheromone deposited by ant k on selection sequence (i, j) (according to
solution quality).
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ACO Example 1: Traveling Salesman Problem

Problem: Find shortest tour visiting all cities exactly once.

Components: Cities {1, 2, . . . ,n}
Pheromone Trails: τij = desirability of traveling from city i to city j
Heuristic Information: ηij = 1

dij (inverse of distance)

Construction Process:
1. Start at random city
2. While unvisited cities remain:

• Calculate probabilities for unvisited cities
• Select next city probabilistically
• Move to selected city

3. Return to starting city
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ACO Example 2: Job Shop Scheduling

Problem: Schedule jobs on machines to minimize makespan.

Components: Operations (j, i) where job j needs machine i
Pheromone Trails: τ(j,i),(k,ℓ) = desirability of scheduling operation (k, ℓ) after
(j, i)
Heuristic Information: η(j,i) = 1

pj,i (inverse processing time)

Construction Process:
1. Initialize: All machines idle, all operations ready
2. While unscheduled operations exist:

• Identify schedulable operations (precedence constraints satisfied)
• Calculate selection probabilities using τ and η
• Select operation probabilistically
• Schedule operation and update machine/job states

Representation Insight: Pheromone encodes good operation sequencing
patterns.
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ACO: Construction Graph Design

Key Design Decisions for ACO Representations:

• What are the components?
• Atomic decision elements
• Example: Cities (TSP), tasks (scheduling), items (selection)

• What are the connections?
• How components can be combined
• Example: City-to-city transitions, operation sequences

• How to handle constraints?
• Implicit: Only allow feasible components in Ni
• Explicit: Penalize constraint violations

• What heuristic information to use?
• Problem-specific greedy guidance
• Example: Distance, processing time, cost

ACO Representation Principle
The construction graph should naturally encode the problem structure and
allow incremental solution building.
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Representation Design Principles

Fundamental Principles

1. Completeness: All valid solutions should be representable
2. Soundness: All representations should decode to valid solutions
3. Non-redundancy: Minimize multiple encodings for same solution
4. Locality: Small changes in encoding → small changes in solution
5. Constraint compatibility: Representation should align with constraint

structure

Practical Steps:
• Analyze constraint types and relationships
• Identify which constraints can be made implicit
• Consider problem decomposition possibilities
• Test multiple representations empirically
• Measure search space characteristics
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Common Pitfalls and How to Avoid Them
• Over-engineering:

• Problem: Too complex representations
• Solution: Start simple, add complexity only when justified

• Ignoring constraints:
• Problem: All constraints handled explicitly
• Solution: Build constraints into representation structure

• Poor scalability:
• Problem: Representation doesn’t scale with problem size
• Solution: Test on problems of different sizes early

• Algorithm mismatch:
• Problem: Representation incompatible with chosen operators
• Solution: Co-design representation and operators

Golden Rule
The best representation makes your problem easier to solve, not harder to
encode
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Key Takeaways

• Representation is fundamental - it often matters more than algorithm
choice
• Constraints are your guide - use them to shape your representation
design
• Multiple viewpoints exist for every problem - explore different
perspectives
• Search space size matters - smaller, more focused spaces usually
perform better
• Implicit constraint handling is almost always better than explicit
• No silver bullet - the best representation is problem-specific
• Empirical validation is essential - test your design choices

Take home message
A Good representation design can transform an intractable problem
into a solvable one!
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Thank You!
Questions?
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