
1

COST Action CA22137 2023-2027

ProblemRepresenta-
tion

First ROAR-NET Training School

Luca Di Gaspero

2

Outline

1 Core Concepts and Examples

2 ROAR-NET API Representation

3 Direct vs. Indirect Representations

4 Represenation in Algorithmic Frameworks

5 Practical Guidelines

6 Conclusion

3

Core Concepts

• Problem: The real-world situation to be solved
• Model: A formal (e.g., mathematical) abstraction of the problem
• Viewpoint: A particular way of looking at the model
• Representation: How solutions are encoded within a viewpoint
• Search Space: All possible encoded solutions

Real
Problem Model Viewpoint

Repre-
sentation

Search
Space

Model Viewpoint

Repre-
sentation

Search
Space

abstraction perspective

encoding

defines

4

Core Concepts: exemplified

• Problem: The real-world situation or question to be solved.
• Example: Find the shortest route visiting all cities.

• Model: An abstraction of the problem, often mathematical.
• Example: Graph G = (V,E) with edge weights, find Hamiltonian cycle of
minimum total weight.

• Representation (Encoding): How a candidate solution to the model is
stored and manipulated by the algorithm.
• Example: The sequence of visited cities (i.e., a permutation of city indices
for TSP).

• Search Space (Solution Space): The set of all possible candidate
solutions that the algorithm can explore, defined by the chosen
representation.
• Example: All permutations of n cities, i.e., n! possible solutions.

5

Representation defines the Search Space

• The representation dictates the structure and size of the search space.
• Different representations of the same problem can lead to radically
different search spaces.
• This impacts:

• The number of candidate solutions (size).
• The “distance” between solutions (neighborhood).
• The presence and structure of local optima (search landscape).
• The effectiveness of search operators (hardness).

6

Building Blocks

Key components of a representation:

• Decision Variables: The controllable inputs that define the solution
space.
• Constraints: Conditions that solutions must satisfy to be valid.
• Objective Function: Evaluates the quality of candidate solutions.

Decision
VariablesConstraints Objective

Function

restrict evaluates

7

Decision Variables

Decision Variables

• Represent the choices or decisions that can be made.
• Their values determine a candidate solution.
• The optimization algorithm searches for the best values for these
variables.
• They define the dimensions of the search space.

Example: In a production planning problem, decision variables might be:
• xi = quantity of product i to produce;
• yj = whether to open facility j (binary);
• zijk = amount shipped from facility i to customer j using transport k.

8

Types of Decision Variables (1/2)

Binary Variables
• Domain: {0, 1}
• Represent yes/no decisions
• Examples: Select item, open
facility, assign task

Integer Variables
• Domain: Z or {a,a+ 1, . . . ,b}
• Discrete quantities or choices
• Examples: Number of units,
worker assignments

Categorical Variables
• Domain: Finite set of categories
• Unordered discrete choices
• Examples: Color, method, route
type

Permutation Variables
• Domain: Permutations of
{1, 2, . . . ,n}
• Ordering/sequencing decisions
• Examples: Task sequence, tour
order

9

Types of Decision Variables (2/2)

Continuous Variables

• Domain: R or [a,b] ⊂ R
• Real-valued quantities
• Examples: Flow rates,
coordinates, weights

Set Variables

• Domain: Subsets of a given set
• Selection of multiple items
• Examples: Feature selection,
coalition formation

The type of decision variables heavily influences the choice of operators

10

Decision Variables: Examples by Problem Type
Problem Decision Variables Variable Type
Knapsack xi = 1 if item i selected Binary
TSP π = permutation of cities Permutation
Portfolio Optimization wi = weight of asset i Continuous
Job Scheduling sj = start time of job j Continuous/Integer
Facility Location yi = 1 if facility i opened Binary

xij = flow from i to j Continuous
Vehicle Routing Route assignment for each

vehicle
Permutation/Set

Neural Network Design wij = weight of connection Continuous
Architecture choices Categorical/Integer

Course Timetabling (t, r) = time and room for
course

Categorical

Most real problems involve mixed variable types, requiring hybrid
representations.

11

Decision Variable Dependencies and Constraints

Decision variables often have complex relationships:

• Independent Variables: Can be set without affecting others
• Example: Investment amounts in different sectors (if no budget constraint)

• Dependent Variables: Value depends on other variables
• Example: Total cost depends on individual quantities produced

• Conditional Dependencies: Constraints only apply under certain
conditions
• Example: If facility is opened, then capacity constraints apply

• Precedence Dependencies: Some decisions must precede others
• Example: Cannot schedule task B before deciding when A has been
completed

Impact on Representation
Dependencies affect how we can encode and modify solutions

12

Example: Production Planning Problem

Production Planning Problem:
• Produce n products using m resources
• Binary decisions: Which products to produce
• Integer decisions: Batch sizes
• Continuous decisions: Resource allocation levels

Decision Variables:
• yi ∈ {0, 1}: 1 if product i is produced
• bi ∈ Z+: Number of batches of product i
• rij ∈ R+: Amount of resource j for product i

Representation Options:
1. Direct: [y1, . . . , yn,b1, . . . ,bn, r11, . . . , rnm]
2. Hierarchical: First decide yi, then bi, finally optimize rij
3. Hybrid: Binary for yi, integer for bi, real for rij

Dependencies: bi = 0 and rij = 0 if yi = 0 (conditional constraints)

13

From Problem Variables to Search Representation

Bridging the Problem Definition and Search Process:

Decision
Variables Encoding Represen-

tation

Search
Operators

model translate

constrains guides

14

Decision Variables Representation Questions

• What is the number, type, and domain of problem variables?
• Are variables continuous, discrete, categorical, or mixed?
• Which variables are interdependent or constrained?
• How should variables be grouped, transformed, or decomposed?
• How do variable structures affect search effectiveness?

Design Principle
Effective representations preserve meaningful structure and enable efficient
search operations.

15

Decision Variables handling (1/2)

Different strategies for handling decision variables:

Direct Encoding
• One element per decision variable
• Natural mapping
• Example: [x1, x2, x3, x4]

Implicit Encoding
• Some variables computed from
others
• Reduce search space
• Example: Priorities →
assignments

Decomposed Encoding
• Separate different variable types
• Specialized operators
• Example: Binary + continuous
parts

16

Decision Variables handling (2/2)

Different strategies for handling decision variables:

Grouped Encoding

• Group related variables by
structure/dependency
• Exploit natural problem
decomposition
• Example: Vehicle routing with 3
vehicles, each group represents a
vehicle’s route
• Encoding:
[[r11, r12, r13], [r21, r22], [r31, r32, r33, r34]]
• Operators can work within/across
groups

Hierarchical Encoding
• High-level decisions first
• Conditional sub-decisions
• Example: Select facility, then
assign customers

Choice depends on:
Variable relationships, constraint structure, algorithm requirements.

17

Constraints (1/2)

Constraints are conditions that solutions must satisfy to be considered valid.

• They can be hard (must be satisfied) or soft (preferable but not
mandatory).
• They define the boundaries of the search space.
• They can be linear, nonlinear, discrete, continuous, etc.

Define feasibility - they separate valid from invalid solutions

18

Constraints (2/2)

Different representations handle constraints differently:

• Implicit constraint handling: Built into the
representation
• Explicit constraint handling: Checked separately
(penalties, repairs)
• Hybrid approaches: Some constraints implicit,
others explicit

Representation

Constraint 1 Constraint 2

Constraint 3

implicit explicit

hybrid

Design Principle
The more constraints you can build into the representation, the more efficient
your search becomes.

19

Example: The N-Queens Problem

• Problem: Place N chess queens
on an N× N chessboard so that
no two queens attack each other.
• Queens attack horizontally,
vertically, and diagonally.
• A classic constraint satisfaction
problem often solved with
optimization techniques (i.e.,
minimize the number of attacking
pairs).

q

q

q

q

q

q

q

q

An 8× 8 chessboard

Key Questions
How do we represent a potential solution (a placement of N queens)?
How does this representation affect the search for valid solutions?

20

N-Queens: Representation Viewpoint 1 (Coordinates)

• Idea: Represent each queen’s position by its (row, column) coordinates.
• A solution is a list of N coordinate pairs: [(r1, c1), (r2, c2), . . . , (rN, cN)].
• For an N× N board:

• Each ri can be from 1 to N.
• Each ci can be from 1 to N.

• Search Space Size: C(N2,N) possible solutions (choosing N distinct
coordinates among N2 possibilities).
• Challenges:

• Extremely large search space.
• Most solutions are invalid (multiple queens in same row/col/diag).
• Example for N = 4: C(16, 4) = 1, 280 solutions.

21

N-Queens: Representation Viewpoint 2 (Fixed Column)

• Observation: A valid N-Queens solution must have exactly one queen
per column.
• Idea: Fix the columns (e.g., 1, 2, . . . ,N) and just decide the row for each
queen.
• A solution is a list of N row indices: [r1, r2, . . . , rN], where ri is the row of
the queen in column i.
• Each ri can be from 1 to N.
• Search Space Size: NN possible solutions.
• Challenges:

• Still many invalid solutions (queens attack horizontally or diagonally).
• Significantly smaller than Viewpoint 1.
• Example for N = 4: 44 = 256 solutions.

22

N-Queens: Representation Viewpoint 3 (Permutation)

• Observation: A valid N-Queens solution must have exactly one queen
per row AND one queen per column.
• Idea: A queen in column i is placed in row pi, where (p1,p2, . . . ,pN) is a
permutation of (1, 2, . . . ,N).
• This implicitly handles the ”one queen per row” and ”one queen per
column” constraints.
• Search Space Size: N! possible solutions.
• Challenges:

• Only diagonal attacks need to be checked.
• Even smaller search space, but solutions still might be invalid.
• Example for N = 4: 4! = 24 solutions.

23

N-Queens: Comparing Search Spaces

Representation Encoding Search Space
Size

Constraints
Checks

Coordinates [(r1, c1), . . . , (rN, cN)]C(N2,N) Row, Col, Diago-
nal

Fixed Column [r1, r2, . . . , rN] NN Row, Diagonal
Permutation [p1,p2, . . . ,pN] N! Diagonal Only

• The choice of representation dramatically changes the size and
characteristics of the search space.
• A “smarter” representation incorporates more problem constraints
implicitly.

24

Example: Nurse Scheduling Problem

• Problem: Four (head) nurses assigned to eight-hour shifts over a week
• Shifts: Shift 1 (day), Shifts 2 and 3 (night)
• Constraints:

1. Every shift is assigned exactly one nurse
2. Each nurse works at most one shift per day
3. Each nurse works at least five days a week (the others should be days off)
4. No shift can be staffed by more than two different nurses in a week
5. A nurse working night shifts (2 or 3) must do so at least two consecutive

days

25

Viewpoint 1: Assignment Worker

• Idea: Directly represent which nurse is assigned to which shift-day
combination
• Representation: Xsd where Xsd = n if nurse n works shift s on day d
• Search Space: 3× 7 variables, 3× 7× 4 = 84 possible assignments
• Constraint Handling:

• Constraint 1: one nurse per shift (implicit)
• Constraint 2-5: (explicit, to check)

• Challenges: Most random assignments violate constraints

Sun Mon Tue Wed Thu Fri Sat
Shift1 A B A A A A A
Shift2 C C C B B B B
Shift3 D D D D C C D

26

Viewpoint 2: Shift Sequence to Nurse

• Idea: Represent each assignment to a nurse for the week as sequence of
shifts
• Representation: Three sequences, one per nurse: SA,SB,SC,SD
• Each sequence: [s1, s2, . . . , s7] where si is the shift assigned for day i
• Search Space: 47 = 16, 384 possible sequences (each day can be one of 3
shifts + day off ⊥)
• Constraint Handling:

• Constraint 1: (explicit, to check)
• Constraint 2: one shift per day (implicit)
• Constraint 3-5: (easier to check)

Sun Mon Tue Wed Thu Fri Sat
Worker A 1 ⊥ 1 1 1 1 1
Worker B ⊥ 1 ⊥ 2 2 2 2
Worker C 2 2 2 ⊥ 3 3 ⊥
Worker D 3 3 3 3 ⊥ ⊥ 3

27

Comparing the Two Viewpoints

Aspect Assignment-Based Sequence-Based
Search Space Size 84 16, 384

Constraint 1 (One nurse per shift) Explicit Implicit
Constraint 2 (One shift per day) Implicit Explicit
Constraint 3-5 Complex Simple

Synchronization (channeling): The two viewpoints should be synchronized.
Operators in the assignment-based representation should modify the
sequences in the sequence-based representation and vice versa.

28

Example: Portfolio Optimization

Problem: Allocate resources across multiple assets maximizing return while
minimizing risk.
• Objective: Maximize expected return while minimizing risk
• Variables: Asset weights wi (proportions of total capital)
• Objective Function (risk minimization):

∑n
i=1

∑n
j=1 σijwiwj, where σij is the

covariance between assets i and j (variance when i = j).
• Constraints:

1. Return constraint, e.g.,
∑n

i=1 riwi ≥ R, where ri is the expected return of
asset i.

2. Total investment equals available capital, i.e.,
∑n

i=1wi = 1
3. Individual asset weights within bounds, e.g., ϵi ≤ wi ≤ δi (or wi = 0 for no

investment).
4. Number of assets must be between minimum and maximum limits, e.g.,

nmin ≤ |{wi|wi > 0, i = 1, . . . ,n}| ≤ nmax.

29

Portfolio Optimization: Decomposition

Strategy:
• Subproblem 1: Asset selection (which assets to include)
• Subproblem 2: Weight allocation (how much to invest in each selected
asset)

Representations:
• For asset selection: Binary vector [s1, s2, ..., sn] where si = 1 if asset i is
selected.
• For weight allocation: Real-valued vector [wi1 ,wi2 , ...,wik] for weights of
selected k assets.

Selecting assets through the binary vector eases the satisfaction of the
cardinality constraints (i.e., nmin ≤ k ≤ nmax).
Once the asssets are selected the weights can be allocated to the selected
assets only, considerably reducing the search space of the (quadratic
programming) weight allocation problem.

30

Constraint Handling Strategies

Penalties
• Add cost for constraint
violations
• Allows exploration of
infeasible regions
• Risk: Algorithm might
converge to infeasible
solutions

Repair
• Fix violated constraints after
operator application
• Ensures all solutions are
feasible
• Risk: May be computationally
expensive

Specialized Operators
• Design operators that preserve
feasibility
• Guarantees feasible offspring
• Risk: Limited exploration
capability

Decoder Functions
• Indirect representation with
constraint-aware decoder
• Can handle complex
constraints elegantly
• Risk: Many-to-one mapping
inefficiency

31

Objective Function (1/2)

Objective Function evaluates the quality or fitness of candidate solutions

• Provides a mechanism for comparing different solutions
• Guides the search process toward better solutions
• May incorporate constraint violations through penalties or other
mechanisms
• Defines what constitutes “improvement” in the search space

Types of Objective Functions:
• Single-objective: f(x)→ R (minimize cost, maximize profit)
• Multi-objective: f(x)→ Rk (minimize cost AND time)
• Multi-criteria: Hierarchical or lexicographic preferences
• Constraint-augmented: f(x) +

∑
penalty(violations)

32

Objective Function (2/2)

Handling Incomplete Solutions:
• Partial evaluation: Assess quality of incomplete solutions during
construction
• Lower bound estimation: Predict best possible completion of partial
solution
• Heuristic completion: Use fast heuristics to complete partial solutions
for evaluation

The objective function shapes the fitness landscape that the algorithm
explores

33

Symmetry and Redundancy in Representations

Symmetry: Multiple different encodings represent the same solution
Redundancy: Search space contains equivalent or duplicate solutions

Examples of Symmetry:
• TSP: Tours [1, 2, 3, 4] and [4, 3, 2, 1]
represent the same cycle
• Graph Coloring: Node
permutations with same color
pattern
• Set Partitioning: Different
orderings of the same partition
• Vehicle Routing: Different
vehicle-route assignments for
identical solutions

Impact on Search:
• Wasted computational effort
• Slower convergence
• Difficulty comparing solutions
• Larger effective search space
• Population diversity issues

34

Strategies to Handle Symmetry and Redundancy

Representation-Level Solutions:
• Canonical Forms:

• Fix ordering conventions
• TSP: Always start from city 1
• Graph: Use lexicographic
ordering

• Reduced Representations:
• Eliminate redundant variables
• Relative vs. absolute encodings
• Random keys instead of
permutations

• Invariant Encodings:
• Representations insensitive to
symmetries

• Edge-based instead of
node-based

Algorithm-Level Solutions:
• Symmetry Breaking:

• Add constraints to eliminate
symmetries

• Preprocessing to identify
symmetric elements

• Normalization:
• Convert solutions to canonical
form

• During evaluation or
comparison

• Duplicate Detection:
• Hash tables for quick lookup
• Distance-based equivalence
checking

35

Example: Handling Tour Symmetries in TSP

TSP Example: Handling Tour Symmetries

Problem Standard Permutation Canonical Form
Multiple equivalent [1, 2, 3, 4], [2, 3, 4, 1], Always start with smallest:
representations [4, 3, 2, 1], [3, 2, 1, 4] [1, 2, 3, 4]

Search space n! possibilities (n−1)!
2 possibilities

reduction (fix start + direction)

Design Principle
Good representations minimize symmetry while preserving solution quality
and operator effectiveness

36

Complete vs. Incomplete Solution Representations

Complete Solutions
• All decision variables assigned
• Ready for immediate evaluation
• Often combined with selective
heuristics

Incomplete Solutions
• Partial variable assignments
• Might allow lower bound
estimation
• Often combined with
constructive heuristics
• Requires to represent
unassigned variables

Examples:
• TSP: Full tour [1, 3, 2, 4, 1]
• Knapsack: [1, 0, 1, 1, 0] for all
items
• Graph coloring: Color for every
node [■,■,■,■]

Examples:
• TSP: Partial tour [1, 3, ?, ?, 1]
• Knapsack: Set of selected items
{0, 1}
• Graph Coloring: Partial colors
[■, ?,■, ?]

37

ROAR-NET API Representation

• The ROAR-NET API is representation agnostic by design.
• Core types:

• Problem: Encapsulates problem-specific data.
• Solution: Encodes a candidate solution in chosen representation.

• Key operations (random_solution, heuristic_solution, empty_solution,
copy_solution, objective_value) are representation-aware:
• Support direct, indirect, hybrid, or problem-specific encodings.
• Generate, copy, and evaluate solutions using underlying representation logic.

• Algorithmic components interact only with abstract Problem/Solution
interfaces.
• Enables experimentation with different representations using the same
framework.

https://github.com/roar-net/roar-net-api-spec/blob/main/src/types/Problem.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/types/Solution.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/operations/random_solution.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/operations/heuristic_solution.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/operations/empty_solution.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/operations/copy_solution.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/operations/objective_value.md

38

ROAR-NET API Representation

• Implementation Note: Solution can include auxiliary data beyond
minimal encoding:
• Examples: Cached objective values, incremental cost updates, auxiliary
structures (adjacency lists, partial schedules).

• Useful for algorithms requiring frequent evaluation or incremental updates.
• API allows transparent updates when solution is modified.

Design Principle
Practical representations combine compact encoding with auxiliary fields for
efficient search and evaluation.

39

Direct Representation

• Definition: The decision variables of the problem are directly encoded as
part of the solution structure.
• Each element in the representation directly corresponds to a decision
variable.
• Often intuitive and straightforward.

Examples:
• Binary Encoding: For problems with binary decisions (e.g., Knapsack
Problem, where each item is either included or not).
• Solution: [1, 0, 1, 1, 0] (items 1, 3, 4 are selected)

• Permutation Encoding: For ordering problems (e.g., TSP, Scheduling).
• Solution: [3, 1, 4, 2] (order of tasks/cities)

• Real-Valued Encoding: For continuous optimization problems.
• Solution: [x1, x2, x3] (values for continuous variables)

40

Direct Encoding: Pros and Cons

Advantages:
• Simplicity: Easy to implement
and interpret.
• Clarity: Direct correspondence
between variables and
representation.
• Efficiency: Enables fast, generic
search operators.
• Validity: Fewer infeasible
solutions.

Disadvantages:
• Operator Design Overhead:
Requires problem-specific
variation operators (e.g.,
permutation-preserving
crossover).
• Constraint Handling: Difficult to
express complex constraints
without repairs or penalty
functions.
• Limited Structural Insight:
Encodings may ignore latent
structure or relationships among
variables (general also to
indirect).

41

Indirect Representation

• Definition: The representation does not directly encode the decision
variables. Instead, it encodes parameters or rules that, when decoded,
generate a candidate solution.
• Requires a decoder function or construction heuristic.
• Often used when direct encoding is difficult or leads to many invalid
solutions.

Examples:
• Priority-based Encoding: For scheduling problems.

• Solution: [0.7, 0.2, 0.9, 0.5] (priorities for tasks).
• Decoder sorts tasks by priority to generate a schedule.

• Rule-based Encoding: For designing complex systems.
• Solution: A set of production rules (e.g., for L-systems in evolutionary art).
• Decoder interprets rules to generate a structure.

• Neural Network Weights: For evolving neural networks.
• Solution: A vector of weights and biases.
• Decoder constructs the network and evaluates its performance.

42

Pros and Cons of Indirect Representation

Advantages:
• Generality: Standard operators
(e.g., bit flip, uniform crossover)
can often be used on the
indirect encoding.
• Compactness: May allow for
more compact representations
of complex solutions.
• Exploration of Building Blocks:
Can focus search on “good”
parameters or rules.
• Decoder Flexibility: The
decoder can handle complex
business logic and rules,
simplifying the search.

Disadvantages:
• Decoder Complexity: Requires
a sophisticated and often
computationally expensive
decoder function.
• Epistasis: Complex relationships
between encoded variables and
actual solution components,
making search difficult.
• Redundancy: Different indirect
encodings might decode to the
same solution (neutrality).
• Loss of Locality: Small changes
in the indirect encoding might
lead to large changes in the
decoded solution.

43

Direct vs. Indirect Representation
Direct
Repre-

sentation
(e.g., Per-
mutation)

Candidate
Solution
(e.g., Tour)

Direct Mapping

Indirect
Repre-

sentation
(e.g.,

Priorities)

Decoder
Function

Candidate
Solution
(e.g.,

Schedule)

Objective
Function

Incremental
Evaluation

Encoded Input

Decoded Output

Evaluates

Evaluates

Evaluates

Direct and Indirect Representations

44

Example: Random Key Encoding for TSP

Problem: Visit all cities exactly once with minimum travel distance.

Direct (Permutation)
• Encoding: [1, 3, 2, 4]
• Meaning: Visit cities in order
1→3→2→4→1
• Constraints: All permutations
valid
• Operators: Need specialized
crossover

Indirect (Random Keys)
• Encoding: [0.7, 0.2, 0.9, 0.1]
• Decoder: Sort by values
• Result: [4, 2, 1, 3] (tour order)
• Operators: Standard real-valued

45

Biased Random Key Genetic Algorithms (BRKGA)

Key Concept: Use random keys to encode solutions for complex
combinatorial problems.

Representation: Vector of real numbers in [0, 1]: [k1, k2, . . . , kn].

Advantages:
• Universal representation: Same encoding for many problem types
• Standard operators: Use real-valued crossover and mutation
• Always feasible: Decoder ensures constraint satisfaction
• Problem-independent search: GA doesn’t need problem knowledge

Core Principle
Separate the search mechanism (GA) from problem knowledge (decoder)

46

BRKGA: General Decoding Framework

• Priority-Based Decoding:
• Keys represent priorities of
elements

• Sort elements by key values
• Process in priority order using
greedy heuristic

• Threshold-Based Decoding:
• Keys represent selection
probabilities

• Elements with ki > θ are selected
• Threshold θ can be fixed or
adaptive

• Parameter-Based Decoding:
• Keys represent heuristic
parameters

• Use constructive algorithm
with key-derived parameters

• Different keys → different
algorithmic behavior

Design Principle
The decoder should be fast, deterministic and provide good solutions.

47

BRKGA Example 1: Job Scheduling

Problem: Schedule n jobs on m machines to minimize makespan.

Representation: n random keys [k1, k2, . . . , kn].
Decoder Algorithm:
1. Sort jobs by key values (descending): kj1 ≥ kj2 ≥ · · · ≥ kjn
2. For each job ji in sorted order:

• Assign ji to machine with earliest completion time (second decision)
• Update machine completion time

Example:
Job Processing Time Random Key Priority Rank Assigned Machine
1 5 0.3 3 M2
2 8 0.9 1 M1
3 3 0.7 2 M2
4 6 0.1 4 M1

Schedule: M1: [Job2, Job4], M2: [Job3, Job1]

48

BRKGA Example 2: Set Cover Problem

Problem: Select minimum cost subset of sets that covers all elements.

Representation: Random key ki for each set Si.
Decoder Algorithm:
1. Sort sets by ki·|Si∩U|

costi (greedy ratio with randomization)
2. Initialize uncovered elements U
3. While U ̸= ∅:

• Select highest-ratio set that covers elements in U
• Add set to solution
• Remove covered elements from U

Key Insight
Random keys bias the greedy selection, leading to different solutions.

Keys: [0.8, 0.3, 0.9, 0.2], Ratios: [2.4, 0.9, 1.8, 0.4] (key × coverage/cost), Selection
order: S1,S3,S2,S4

49

Binary Chromosomes in Genetic Algorithms

Binary Representation: Solutions encoded as strings of 0s and 1s.

Natural Applications:
• Selection Problems: Each bit indicates inclusion/exclusion
• Feature Selection: Bit i = 1 if feature i is selected
• Knapsack Problems: Bit i = 1 if item i is taken
• Network Design: Bit i = 1 if edge i is included

Advantages:
• Simple, well-understood operators (one-point, uniform crossover)
• Efficient bit manipulation
• Schema theorem analysis applies
• Many theoretical results available

Chromosome: [1, 0, 1, 1, 0, 1, 0, 1], Meaning: Select items {1, 3, 4, 6, 8}, Fitness:
evaluate selected subset

50

Binary Decoding Strategies

Direct Binary Decoding:
• Bit i directly corresponds to decision variable xi
• xi = 1 if bit i = 1, else xi = 0

• Simple but may violate constraints

Gray Code Decoding:
• For numerical optimization with binary strings
• Adjacent integers differ by exactly one bit
• Reduces the impact of crossover disruption

Constraint-Based Decoding:
• Repair: Fix violations after direct decoding
• Greedy Construction: Use bits to guide feasible construction
• Priority-Based: Bits represent priorities, then apply decoding algorithm

51

Example of Constraint-Based Decoding

Knapsack with repair
1. Direct decode: [1, 1, 1, 1]→ select all items
2. Check capacity: Total weight = 100, capacity = 80 (infeasible)
3. Repair: Remove lowest value/weight ratio items until feasible

52

ACO: Indirect Solution Construction

ACO Representation Concept:
• No explicit chromosomes - solutions are constructed incrementally
• Pheromone trails are attached to the “representation” (solution
elements)
• Each ant builds a solution by following probabilistic rules
• Pheromone concentrations encode collective knowledge

Pheromone
Matrix τ

Probabilistic
Construction

Complete
Solution

Pheromone
Update

guides builds

evaluates
modifies

53

ACO: Pheromone Trail Representation

Pheromone Trail Structure:

• Components: Problem-specific building blocks (cities, jobs, edges)
• Connections: Pheromone τij on transitions between components
• Meaning: τij = learned desirability of choosing j after i

Construction Rule (general form): pij = [τij]
α·[ηij]β∑

k∈Ni
[τik]α·[ηik]β

, where:

• τij = pheromone trail (learned)
• ηij = heuristic information (problem-specific)
• α, β = parameters balancing exploration vs. exploitation
• Ni = feasible components from state i

Pheromone Update: τij ← (1− ρ)τij +
∑

k∆τ kij , where ρ = evaporation rate, ∆τ kij
= pheromone deposited by ant k on selection sequence (i, j) (according to
solution quality).

54

ACO Example 1: Traveling Salesman Problem

Problem: Find shortest tour visiting all cities exactly once.

Components: Cities {1, 2, . . . ,n}
Pheromone Trails: τij = desirability of traveling from city i to city j
Heuristic Information: ηij = 1

dij (inverse of distance)

Construction Process:
1. Start at random city
2. While unvisited cities remain:

• Calculate probabilities for unvisited cities
• Select next city probabilistically
• Move to selected city

3. Return to starting city

55

ACO Example 2: Job Shop Scheduling

Problem: Schedule jobs on machines to minimize makespan.

Components: Operations (j, i) where job j needs machine i
Pheromone Trails: τ(j,i),(k,ℓ) = desirability of scheduling operation (k, ℓ) after
(j, i)
Heuristic Information: η(j,i) = 1

pj,i (inverse processing time)

Construction Process:
1. Initialize: All machines idle, all operations ready
2. While unscheduled operations exist:

• Identify schedulable operations (precedence constraints satisfied)
• Calculate selection probabilities using τ and η
• Select operation probabilistically
• Schedule operation and update machine/job states

Representation Insight: Pheromone encodes good operation sequencing
patterns.

56

ACO: Construction Graph Design

Key Design Decisions for ACO Representations:

• What are the components?
• Atomic decision elements
• Example: Cities (TSP), tasks (scheduling), items (selection)

• What are the connections?
• How components can be combined
• Example: City-to-city transitions, operation sequences

• How to handle constraints?
• Implicit: Only allow feasible components in Ni
• Explicit: Penalize constraint violations

• What heuristic information to use?
• Problem-specific greedy guidance
• Example: Distance, processing time, cost

ACO Representation Principle
The construction graph should naturally encode the problem structure and
allow incremental solution building.

57

Representation Design Principles

Fundamental Principles

1. Completeness: All valid solutions should be representable
2. Soundness: All representations should decode to valid solutions
3. Non-redundancy: Minimize multiple encodings for same solution
4. Locality: Small changes in encoding → small changes in solution
5. Constraint compatibility: Representation should align with constraint

structure

Practical Steps:
• Analyze constraint types and relationships
• Identify which constraints can be made implicit
• Consider problem decomposition possibilities
• Test multiple representations empirically
• Measure search space characteristics

58

Common Pitfalls and How to Avoid Them
• Over-engineering:

• Problem: Too complex representations
• Solution: Start simple, add complexity only when justified

• Ignoring constraints:
• Problem: All constraints handled explicitly
• Solution: Build constraints into representation structure

• Poor scalability:
• Problem: Representation doesn’t scale with problem size
• Solution: Test on problems of different sizes early

• Algorithm mismatch:
• Problem: Representation incompatible with chosen operators
• Solution: Co-design representation and operators

Golden Rule
The best representation makes your problem easier to solve, not harder to
encode

59

Key Takeaways

• Representation is fundamental - it often matters more than algorithm
choice
• Constraints are your guide - use them to shape your representation
design
• Multiple viewpoints exist for every problem - explore different
perspectives
• Search space size matters - smaller, more focused spaces usually
perform better
• Implicit constraint handling is almost always better than explicit
• No silver bullet - the best representation is problem-specific
• Empirical validation is essential - test your design choices

Take home message
A Good representation design can transform an intractable problem
into a solvable one!

60

Thank You!
Questions?

61

Acknowledgments

This presentation is based upon work from COST Action Ran-
domised Optimisation Algorithms Research Network (ROAR-
NET), CA22137, supported by COST (European Cooperation in
Science and Technology).

COST (European Cooperation in Science and Technology) is a fund-
ing agency for research and innovation networks. Our Actions help
connect research initiatives across Europe and enable scientists to
grow their ideas by sharing them with their peers. This boosts their
research, career and innovation.

62

References I

C. A. Coello Coello.
Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art.
Computer Methods in Applied Mechanics and Engineering,
191(11-12):1245–1287, 2002.

A. E. Eiben and J. E. Smith.
Introduction to Evolutionary Computing.
Springer-Verlag, Berlin, 2nd edition, 2015.

M. Gendreau and J.-Y. Potvin, editors.
Handbook of metaheuristics.
International Series in Operations Research & Management Science.
Springer International Publishing, Basel, Switzerland, 3 edition, Sept. 2018.

63

References II

J. F. Gonçalves and M. G. C. Resende.
Biased random-key genetic algorithms for combinatorial optimization.
Journal of Heuristics, 17(5):487–525, 2011.

R. Martí, P. Panos, and M. Resende, editors.
Handbook of heuristics.
Handbook of Heuristics. Springer International Publishing, Basel,
Switzerland, 1 edition, Nov. 2016.
ROAR-NET API Contributors.
Roar-net api python implementation.
https://github.com/roar-net/roar-net-api-py, 2025.
Accessed: 2025-06-15.

https://github.com/roar-net/roar-net-api-py

64

References III

ROAR-NET API Contributors.
Roar-net api specification.
https://github.com/roar-net/roar-net-api-spec, 2025.
Accessed: 2025-06-15.
F. Rothlauf.
Representations for Genetic and Evolutionary Algorithms, volume 104 of
Studies in Fuzziness and Soft Computing.
Springer-Verlag, Berlin, 2nd edition, 2006.

F. Rothlauf.
Design of modern heuristics.
Natural Computing Series. Springer, Berlin, Germany, 2011 edition, July
2011.

https://github.com/roar-net/roar-net-api-spec

	Core Concepts and Examples
	Decision Variables
	Constraints
	N-Queens Problem
	Nurse Scheduling Problem
	Portfolio Optimization
	Objective Function
	Symmetry and Redundancy

	ROAR-NET API Representation
	Direct vs. Indirect Representations
	Represenation in Algorithmic Frameworks
	Biased Random Key Genetic Algorithms
	Binary Chromosome Representation for GAs
	Ant Colony Optimization Representations

	Practical Guidelines
	Conclusion
	References

