COST Action CA22137 2023-2027

R
or \ Problem Representa-
e tion

First ROAR-NET Training School
Luca Di Gaspero

OOOOOOOOOOOOOOOOOOO
NNNNNNNNNNNNNNNNNNNN

Outline

@ Core Concepts and Examples

@ ROAR-NET API Representation

® Direct vs. Indirect Representations

@ Represenation in Algorithmic Frameworks
@ Practical Guidelines

@® Conclusion

Core Concepts

Problem: The real-world situation to be solved

Model: A formal (e.g., mathematical) abstraction of the problem
Viewpoint: A particular way of looking at the model

® Representation: How solutions are encoded within a viewpoint

Search Space: All possible encoded solutions

i erspective
Real abstraction Model persp Viewpoint I
Problem I

encoding

Repre_ defines Search
sentation [} Space

3

Core Concepts: exemplified

® Problem: The real-world situation or question to be solved.
® Fxample: Find the shortest route visiting all cities.
® Model: An abstraction of the problem, often mathematical.
® £xample: Graph G = (V, E) with edge weights, find Hamiltonian cycle of
minimum total weight.

* Representation (Encoding): How a candidate solution to the model is
stored and manipulated by the algorithm.
® Example: The sequence of visited cities (i.e., a permutation of city indices
for TSP).
® Search Space (Solution Space): The set of all possible candidate
solutions that the algorithm can explore, defined by the chosen
representation.
* Fxample: All permutations of n cities, i.e., n! possible solutions.

Representation defines the Search Space

® The representation dictates the structure and size of the search space.

e Different representations of the same problem can lead to radically
different search spaces.
® This impacts:
® The number of candidate solutions (size).
The “distance” between solutions (neighborhood).
The presence and structure of local optima (search landscape).
The effectiveness of search operators (hardness).

Building Blocks

Key components of a representation:

¢ Decision Variables: The controllable inputs that define the solution
space.
® Constraints: Conditions that solutions must satisfy to be valid.

® Objective Function: Evaluates the quality of candidate solutions.

restrict evaluates
Decision Objective
Variables Function

[Constraints

Decision Variables

Decision Variables

e Represent the choices or decisions that can be made.

® Their values determine a candidate solution.

® The optimization algorithm searches for the best values for these
variables.

® They define the dimensions of the search space.

Example: In a production planning problem, decision variables might be:
® x; = quantity of product / to produce;

* y; = whether to open facility j (binary);
® z; = amount shipped from facility / to customer j using transport k.

Types of Decision Variables (1/2)

Binary Variables
e Domain: {0,1}
® Represent yes/no decisions

e £xamples: Select item, open
facility, assign task

Integer Variables
e Domain: Z or {a,a+1,...,b}
e Discrete quantities or choices

e £xamples: Number of units,
worker assignments

Categorical Variables
e Domain: Finite set of categories
® Unordered discrete choices
e Fxamples: Color, method, route
type

Permutation Variables
e Domain: Permutations of
{1,2,...,n}
® Ordering/sequencing decisions

® fxamples: Task sequence, tour
order

Types of Decision Variables (2/2)

Continuous Variables Set Variables
e Domain: R or [a,b] CR ® Domain: Subsets of a given set
® Real-valued quantities e Selection of multiple items
® £xamples: Flow rates, e Lxamples: Feature selection,
coordinates, weights coalition formation

The type of decision variables heavily influences the choice of operators

roptem

Knapsack Xx; = 1if item / selected Binary
TSP m = permutation of cities Permutation
Portfolio Optimization w; = weight of asset/ Continuous
Job Scheduling s; = start time of job j Continuous/Integer
Facility Location y; = 1if facility / opened Binary

xj = flow fromj to j Continuous

Vehicle Routing

Route assignment for each
vehicle

Permutation/Set

Neural Network Design

w; = weight of connection
Architecture choices

Continuous
Categorical/Integer

Course Timetabling

(t,r) = time and room for
course

Categorical

I
Most real problems involve mixed variable types, requiring hybrid

representations.

Decision Variable Dependencies and Constraints

Decision variables often have complex relationships:

¢ Independent Variables: Can be set without affecting others
® Example: Investment amounts in different sectors (if no budget constraint)
¢ Dependent Variables: \Value depends on other variables
® Example: Total cost depends on individual quantities produced
¢ Conditional Dependencies: Constraints only apply under certain
conditions
® Example: If facility is opened, then capacity constraints apply
* Precedence Dependencies: Some decisions must precede others
® Example: Cannot schedule task B before deciding when A has been
completed

Impact on Representation

Dependencies affect how we can encode and modify solutions

Example: Production Planning Problem

Production Planning Problem:
® Produce n products using m resources
Binary decisions: Which products to produce
Integer decisions: Batch sizes
Continuous decisions: Resource allocation levels

Decision Variables:
e y; € {0,1}: 1if product /is produced
e pb; € Z™: Number of batches of product i
® rj € R*t: Amount of resource j for product /

Representation Options:
1. Direct: [y1,...,Vn, b1y, bny i1y o vy Fam)
2. Hierarchical: First decide y;, then b;, finally optimize r;
3. Hybrid: Binary for y;, integer for b;, real for ry

Dependencies: b, =0 and r; = 0 if y; = 0 (conditional constraints)

From Problem Variables to Search Representation

Bridging the Problem Definition and Search Process:
Decision model : translate Represen-
X Encoding .
Variables tation

guides

Search
Operators

Decision Variables Representation Questions

What is the number, type, and domain of problem variables?

Are variables continuous, discrete, categorical, or mixed?
Which variables are interdependent or constrained?

How should variables be grouped, transformed, or decomposed?
® How do variable structures affect search effectiveness?

Design Principle

Effective representations preserve meaningful structure and enable efficient
search operations.

Decision Variables handling (1/2)

Different strategies for handling decision variables:

Direct Encoding
® One element per decision variable
e Natural mapping
e Example: [xy, X2, X3, X4]

Implicit Encoding

e Some variables computed from
others

e Reduce search space

® Example: Priorities -
assignments

Decomposed Encoding
e Separate different variable types
® Specialized operators

e Example: Binary + continuous
parts

Decision Variables handling (2/2)

Different strategies for handling decision variables:

Grouped Encoding Hierarchical Encoding

¢ High-level decisions first

e Conditional sub-decisions

e Example: Select facility, then
assign customers

® Group related variables by
structure/dependency

e Exploit natural problem
decomposition

® Fxample: Vehicle routing with 3
vehicles, each group represents a
vehicle’s route

® Encoding:
([, 3 3l It i3] [3. s, il

® Operators can work within/across
groups

Choice depends on:

Variable relationships, constraint structure, algorithm requirements.

Constraints (1/2)

Constraints are conditions that solutions must satisfy to be considered valid.

® They can be hard (must be satisfied) or soft (preferable but not
mandatory).

e They define the boundaries of the search space.

® They can be linear, nonlinear, discrete, continuous, etc.

Define feasibility - they separate valid from invalid solutions

Constraints (2/2)

Different representations handle constraints differently:

(Constraint 1J (Constraint QJ

¢ Implicit constraint handling: Built into the S =
representation e e

¢ Explicit constraint handling: Checked separately Representation
(penalties, repairs)

hybrid
others explicit Constraint 3

Design Principle

e Hybrid approaches: Some constraints implicit,

The more constraints you can build into the representation, the more efficient
your search becomes.

Example: The N-Queens Problem

¢ Problem: Place N chess queens
on an N x N chessboard so that W
no two queens attack each other. W

® Queens attack horizontally, Wy
vertically, and diagonally.

e A classic constraint satisfaction 77
problem often solved with W
optimization techniques (i.e.,
minimize the number of attacking
pairs).

An 8 x 8 chessboard

Key Questions

How do we represent a potential solution (a placement of N queens)?
How does this representation affect the search for valid solutions?

N-Queens: Representation Viewpoint 1 (Coordinates) <\

e

Idea: Represent each queen’s position by its (row, column) coordinates.

A solution is a list of N coordinate pairs: [(r1,¢1), (r2,C2), ..., (rn, Cn)]-
For an N x N board:

® Fach r; can be from 1 to N.

® Each c; can be from 1 to N.
Search Space Size: C(N?, N) possible solutions (choosing N distinct
coordinates among N? possibilities).
Challenges:

® Extremely large search space.
® Most solutions are invalid (multiple queens in same row/col/diag).
® Example for N =4: C(16,4) = 1,280 solutions.

20

N-Queens: Representation Viewpoint 2 (Fixed Column) <\

EX

® Observation: A valid N-Queens solution must have exactly one queen

per column.

e Idea: Fix the columns (e.g, 1,2,...,N) and just decide the row for each
queen.

e A solution is a list of N row indices: [r1,r2,...,rn], where r; is the row of

the queen in column /.
e Fach r; can be from 1 to N.
¢ Search Space Size: V" possible solutions.

¢ Challenges:

e Still many invalid solutions (queens attack horizontally or diagonally).
e Significantly smaller than Viewpoint 1.
e Example for N = 4: 4* = 256 solutions.

21

N-Queens: Representation Viewpoint 3 (Permutation) <™\

e

® Observation: A valid N-Queens solution must have exactly one queen
per row AND one gueen per column.

¢ Idea: A queen in column i is placed in row p;, where (p1,p2,...,0on) iS @
permutation of (1,2,...,N).

e This implicitly handles the "one queen per row” and "one queen per
column” constraints.

e Search Space Size: N! possible solutions.

¢ Challenges:

® Only diagonal attacks need to be checked.
® Even smaller search space, but solutions still might be invalid.
® Example for N = 4: 4! = 24 solutions.

22

N-Queens: Comparing Search Spaces

Representation | Encoding Search Space | Constraints
Size Checks
Coordinates [(r1,c1),. .., (v, cn)] C(N?,N) Row, Col, Diago-
nal
Fixed Column [F1,r2y .y I NN Row, Diagonal
Permutation [P1,02, -, PN] N! Diagonal Only

® The choice of representation dramatically changes the size and
characteristics of the search space.

® A “smarter” representation incorporates more problem constraints

implicitly.

23

Example: Nurse Scheduling Problem

¢ Problem: Four (head) nurses assigned to eight-hour shifts over a week

e Shifts: Shift 1 (day), Shifts 2 and 3 (night)
¢ Constraints:

1.
2. Each nurse works at most one shift per day

3. Each nurse works at least five days a week (the others should be days off)
4.

5. A nurse working night shifts (2 or 3) must do so at least two consecutive

Every shift is assigned exactly one nurse

No shift can be staffed by more than two different nurses in a week

days

24

Viewpoint 1: Assignment Worker

Idea: Directly represent which nurse is assigned to which shift-day
combination

® Representation: X, where X;y = n if nurse n works shift s on day d

Search Space: 3 x 7 variables, 3 x 7 x 4 = 84 possible assignments
¢ Constraint Handling:

® Constraint 1: one nurse per shift (implicit)
® Constraint 2-5: (explicit, to check)

Challenges: Most random assignments violate constraints

Sun Mon Tue Wed Thu Fri Sat
Shift1 A B A A A A A
Shift2 C C C B B B B
Shift3 D D D D C C D

25

Viewpoint 2: Shift Sequence to Nurse

¢ Idea: Represent each assignment to a nurse for the week as sequence of

shifts
* Representation: Three sequences, one per nurse: Su, Sg, Sc, Sp
® Each sequence: [s1,S2,...,S7] where s; is the shift assigned for day i

e Search Space: 4" = 16,384 possible sequences (each day can be one of 3
shifts + day off 1)
¢ Constraint Handling:
® Constraint 1: (explicit, to check)
® Constraint 2: one shift per day (implicit)
® Constraint 3-5: (easier to check)

Sun Mon Tue Wed Thu Fri Sat

Worker A 1 L 1 1 1 1 1
Worker B L 1 L 2 2 2 2
Worker C 2 2 2 L 3 3 L
Worker D 3 3 3 3 il il 3

26

Comparing the Two Viewpoints

Aspect Assignment-Based | Sequence-Based
Search Space Size 84 16,384
Constraint 1 (One nurse per shift) Explicit Implicit
Constraint 2 (One shift per day) Implicit Explicit
Constraint 3-5 Complex Simple

Synchronization (channeling): The two viewpoints should be synchronized.
Operators in the assignment-based representation should modify the
sequences in the sequence-based representation and vice versa.

27

Example: Portfolio Optimization

Problem: Allocate resources across multiple assets maximizing return while
minimizing risk.

® Objective: Maximize expected return while minimizing risk

¢ Variables: Asset weights w; (proportions of total capital)

e Objective Function (risk minimization): "7, ZJ 1 ojwWw;, where oy is the
covariance between assets / and j (variance when /i =).

® Constraints:

1. Return constraint, e.g., Z,’;l riw; > R, where r; is the expected return of
asset /.

2. Total investment equals available capital, i.e, >, w; =1

3. Individual asset weights within bounds, e.g., ¢, < w; < é; (or w; = 0 for no
investment).

4. Number of assets must be between minimum and maximum limits, e.g,,
Nmin < |{W/‘|W[> O,f: 1,.. .,ﬂ}| < Nmox-

28

Portfolio Optimization: Decomposition

Strategy:

¢ Subproblem 1. Asset selection (which assets to include)
¢ Subproblem 2: Weight allocation (how much to invest in each selected
asset)

Representations:

e For asset selection: Binary vector [si, So, ..., Sy] Where s; = 1 if asset / is
selected.

¢ For weight allocation: Real-valued vector [w;,, wi,, ..., w; | for weights of
selected k assets.

Selecting assets through the binary vector eases the satisfaction of the
cardinality constraints (i.e., Nmin < k < Nmax)-

Once the asssets are selected the weights can be allocated to the selected
assets only, considerably reducing the search space of the (quadratic
programming) weight allocation problem. 29

Constraint Handling Strategies

Penalties Specialized Operators
e Add cost for constraint ® Design operators that preserve
violations feasibility
® Allows exploration of e Guarantees feasible offspring
infeasible regions ® Risk: Limited exploration
® Risk: Algorithm might capability
converge to infeasible .
solutions Decoder Functions
¢ |ndirect representation with
Repair constraint-aware decoder
® Fix violated constraints after ® Can handle complex
operator application constraints elegantly
® Ensures all solutions are ® Risk: Many-to-one mapping
feasible inefficiency

® Risk: May be computationally
expensive 30

Objective Function (1/2)

Objective Function evaluates the quality or fitness of candidate solutions

® Provides a mechanism for comparing different solutions

® Guides the search process toward better solutions

® May incorporate constraint violations through penalties or other
mechanisms

e Defines what constitutes “improvement” in the search space

Types of Objective Functions:

Single-objective: 7(x) — R (minimize cost, maximize profit)
Multi-objective: f(x) — R* (minimize cost AND time)
Multi-criteria: Hierarchical or lexicographic preferences
Constraint-augmented: f(x) + > penalty(violations)

31

Objective Function (2/2)

Handling Incomplete Solutions:

¢ Partial evaluation: Assess quality of incomplete solutions during
construction
¢ Lower bound estimation: Predict best possible completion of partial

solution
¢ Heuristic completion: Use fast heuristics to complete partial solutions
for evaluation

|
The objective function shapes the fitness landscape that the algorithm
explores

32

Symmetry and Redundancy in Representations

Symmetry: Multiple different encodings represent the same solution
Redundancy: Search space contains equivalent or duplicate solutions

Examples of Symmetry:
e TSP: Tours [1,2,3,4] and [4,3,2,1]

represent the same cycle Impact on Search:
e Graph Coloring: Node ® \Wasted computational effort
permutations with same color °

Slower convergence
pattern

e Set Partitioning: Different
orderings of the same partition
¢ Vehicle Routing: Different

vehicle-route assignments for
identical solutions

Difficulty comparing solutions

Larger effective search space

Population diversity issues

33

Strategies to Handle Symmetry and Redundancy

Representation-Level Solutions: Algorithm-Level Solutions:
e Canonical Forms: e Symmetry Breaking:
® Fix ordering conventions ® Add constraints to eliminate
® TSP: Always start from city 1 symmetries
® Graph: Use lexicographic ® Preprocessing to identify
ordering symmetric elements
¢ Reduced Representations: ¢ Normalization:
® Eliminate redundant variables ® Convert solutions to canonical
® Relative vs. absolute encodings form
® Random keys instead of ® During evaluation or
permutations comparison
¢ Invariant Encodings: ¢ Duplicate Detection:
® Representations insensitive to ® Hash tables for quick lookup
symmetries ® Distance-based equivalence
® Edge-based instead of checking

node-based)

Example: Handling Tour Symmetries in TSP

TSP Example: Handling Tour Symmetries

Problem

Standard Permutation

Canonical Form

Multiple equivalent
representations

[1,2,3,4], 2,3,4,1],
[4,3,2,1], [3,2,1,4]

Always start with smallest:
[1,2,3,4]

Search space
reduction

n! possibilities

@ possibilities

(fix start + direction)

Design Principle

Good representations minimize symmetry while preserving solution quality
and operator effectiveness

35

Complete vs. Incomplete Solution Representations

Complete Solutions Incomplete Solutions
¢ All decision variables assigned e Partial variable assignments
® Ready for immediate evaluation * Might allow lower bound
e Often combined with selective estimation
heuristics e Often combined with

constructive heuristics
® Requires to represent
unassigned variables

Examples: Examples:
e TSP: Full tour [1,3,2,4,1] ® TSP: Partial tour [1,3,7,7,1]
e Knapsack: [1,0,1,1,0] for all e Knapsack: Set of selected items
items {0,1}
e Graph coloring: Color for every ® Graph Coloring: Partial colors

node [H, W N H] (W, 7, 17

36

ROAR-NET API Representation

e The ROAR-NET API is representation agnostic by design.
e Core types:

® Problem: Encapsulates problem-specific data.
® Solution: Encodes a candidate solution in chosen representation.

® Key operations (random_solution, heuristic_solution, empty_solution,
copy_solution, objective_value) are representation-aware:
® Support direct, indirect, hybrid, or problem-specific encodings.
® Generate, copy, and evaluate solutions using underlying representation logic.
e Algorithmic components interact only with abstract Problem/Solution
interfaces.

® Enables experimentation with different representations using the same
framework.

37

https://github.com/roar-net/roar-net-api-spec/blob/main/src/types/Problem.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/types/Solution.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/operations/random_solution.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/operations/heuristic_solution.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/operations/empty_solution.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/operations/copy_solution.md
https://github.com/roar-net/roar-net-api-spec/blob/main/src/operations/objective_value.md

ROAR-NET API Representation

¢ Implementation Note: Solution can include auxiliary data beyond
minimal encoding:
® Fxamples: Cached objective values, incremental cost updates, auxiliary
structures (adjacency lists, partial schedules).
e Useful for algorithms requiring frequent evaluation or incremental updates.
® APl allows transparent updates when solution is modified.

Design Principle

Practical representations combine compact encoding with auxiliary fields for
efficient search and evaluation.

38

Direct Representation

¢ Definition: The decision variables of the problem are directly encoded as
part of the solution structure.

e Fach element in the representation directly corresponds to a decision
variable.

e Often intuitive and straightforward.

Examples:

¢ Binary Encoding: For problems with binary decisions (e.g., Knapsack
Problem, where each item is either included or not).

® Solution: [1,0,1,1,0] (items 1, 3, 4 are selected)

¢ Permutation Encoding: For ordering problems (e.g., TSP, Scheduling).
® Solution: [3,1,4,2] (order of tasks/cities)

¢ Real-Valued Encoding: For continuous optimization problems.

® Solution: [x1, X2, x3] (values for continuous variables)
39

Direct Encoding: Pros and Cons

Advantages: Disadvantages:

e Simplicity: Fasy to implement ® Operator Design Overhead:
and interpret. Requires problem-specific

e Clarity: Direct correspondence variation operators (e.g,
between variables and permutation-preserving
representation. crossover).

e Efficiency: Enables fast, generic ¢ Constraint Handling: Difficult to
search operators. express complex constraints

without repairs or penalty

¢ Validity: Fewer infeasible

: functions.
solutions.

¢ Limited Structural Insight:
Encodings may ignore latent
structure or relationships among
variables (general also to
indirect). 40

Indirect Representation

¢ Definition: The representation does not directly encode the decision
variables. Instead, it encodes parameters or rules that, when decoded,
generate a candidate solution.

e Requires a decoder function or construction heuristic.

e Often used when direct encoding is difficult or leads to many invalid
solutions.

Examples:

¢ Priority-based Encoding: For scheduling problems.
® Solution: [0.7,0.2,0.9,0.5] (priorities for tasks).
® Decoder sorts tasks by priority to generate a schedule.

¢ Rule-based Encoding: For designing complex systems.
® Solution: A set of production rules (e.g., for L-systems in evolutionary art).
® Decoder interprets rules to generate a structure.

¢ Neural Network Weights: For evolving neural networks.
® Solution: A vector of weights and biases.

® Decoder constructs the network and evaluates its performance. “

Pros and Cons of Indirect Representation SN

Advantages:

¢ Generality: Standard operators
(e.g., bit flip, uniform crossover)
can often be used on the
indirect encoding.

e Compactness: May allow for
more compact representations
of complex solutions.

e Exploration of Building Blocks:

Can focus search on “good”
parameters or rules.

¢ Decoder Flexibility: The
decoder can handle complex
business logic and rules,
simplifying the search.

Te<

Disadvantages:
* Decoder Complexity: Requires

a sophisticated and often
computationally expensive
decoder function.

Epistasis: Complex relationships
between encoded variables and
actual solution components,
making search difficult.
Redundancy: Different indirect
encodings might decode to the
same solution (neutrality).

Loss of Locality: Small changes
in the indirect encoding might
lead to large changes in the

decoded solution. 42

Direct vs. Indirect Representation

Direct Indirect
Repre- Repre-
sentation sentation
(e.g., Per- (eg.,
mutation) Priorities)
. _J
EvaluaV' Direct Mapping Encoded Input
(Candidate) a
[Incremental] Solution [Decoder
Evaluation Function
L (e.g., Tour) J
Decoded Output
Evaluates
Candidate
Objective 1 Evaluates Solution
Function J (eg,
Schedule)

Direct and Indirect Representations
43

Example: Random Key Encoding for TSP

Problem: Visit all cities exactly once with minimum travel distance.

Direct (Permutation)

* Encoding: [1,3,2,4] Indirect (Random Keys)

® Meaning: Visit cities in order ® Encoding: [0.7,0.2,0.9,0.1]
12322241 e Decoder: Sort by values

¢ Constraints: All permutations e Result: [4,2,1,3] (tour order)
valid T

o ® QOperators: Standard real-valued
e Operators: Need specialized

crossover

44

Biased Random Key Genetic Algorithms (BRKGA) N

=

Key Concept: Use random keys to encode solutions for complex
combinatorial problems.

Representation: \ector of real numbers in [0, 1]: [k1,ka,...,Kkn].

Advantages:
¢ Universal representation: Same encoding for many problem types
e Standard operators: Use real-valued crossover and mutation
¢ Always feasible: Decoder ensures constraint satisfaction
¢ Problem-independent search: GA doesn’'t need problem knowledge

Core Principle

Separate the search mechanism (GA) from problem knowledge (decoder)

45

BRKGA: General Decoding Framework

* Priority-Based Decoding: ¢ Parameter-Based Decoding:
® Keys represent priorities of ® Keys represent heuristic
elements parameters
® Sort elements by key values ® Use constructive algorithm
® Process in priority order using with key-derived parameters
greedy heuristic ® Different keys — different
¢ Threshold-Based Decoding: algorithmic behavior

® Keys represent selection
probabilities

® Clements with k; > 0 are selected

® Threshold € can be fixed or
adaptive

Design Principle

The decoder should be fast, deterministic and provide good solutions.
46

BRKGA Example 1: Job Scheduling

Problem: Schedule n jobs on m machines to minimize makespan.

Representation: n random keys [k1, ko, ..., kn].

Decoder Algorithm:
1. Sort jobs by key values (descending): kj, > kj, > --- > k;
2. For each job ji in sorted order:

® Assign j;i to machine with earliest completion time (second decision)
® Update machine completion time

Example:
Job | Processing Time | Random Key | Priority Rank | Assigned Machine
1 5 0.3 3 M2
2 8 0.9 1 M1
3 3 N4 2 M2
4 6 01 4 M1

Schedule: M1: [Job2, Job4], M2: [Job3, Job1] a7

BRKGA Example 2: Set Cover Problem

Problem: Select minimum cost subset of sets that covers all elements.

Representation: Random key k; for each set S;.

Decoder Algorithm:

1. Sort sets by kiig;“' (greedy ratio with randomization)

2. Initialize uncovered elements U
3. While U # (:

® Select highest-ratio set that covers elements in U
® Add set to solution
® Remove covered elements from U

Key Insight

Random keys bias the greedy selection, leading to different solutions.

Keys: [0.8,0.3,0.9,0.2], Ratios: [2.4,0.9,1.8,0.4] (key x coverage/cost), Selection
order: 81,83,82,84 48

Binary Chromosomes in Genetic Algorithms

Binary Representation: Solutions encoded as strings of 0s and 1s.

Natural Applications:
® Selection Problems: Each bit indicates inclusion/exclusion
* Feature Selection: Bit/ = 1if feature j is selected
¢ Knapsack Problems: Bit / = 1if item / is taken
* Network Design: Bit / = 1if edge / is included

Advantages:

Simple, well-understood operators (one-point, uniform crossover)
Efficient bit manipulation

Schema theorem analysis applies

Many theoretical results available

Chromosome: [1,0,1,1,0,1,0,1], Meaning: Select items {1, 3,4,6,8}, Fitness:
evaluate selected subset 49

Binary Decoding Strategies

Direct Binary Decoding:
e Bit / directly corresponds to decision variable x;
e x,=1ifbiti=1,elsex;,=0
® Simple but may violate constraints

Gray Code Decoding:
® For numerical optimization with binary strings
e Adjacent integers differ by exactly one bit
® Reduces the impact of crossover disruption

Constraint-Based Decoding:
e Repair: Fix violations after direct decoding
® Greedy Construction: Use bits to guide feasible construction
® Priority-Based: Bits represent priorities, then apply decoding algorithm

50

Example of Constraint-Based Decoding

Knapsack with repair
1. Direct decode: [1,1,1,1] — select all items
2. Check capacity: Total weight = 100, capacity = 80 (infeasible)
3. Repair: Remove lowest value/weight ratio items until feasible

51

ACO: Indirect Solution Construction

ACO Representation Concept:

* No explicit chromosomes - solutions are constructed incrementally
®* Pheromone trails are attached to the “representation” (solution
elements)

e Fach ant builds a solution by following probabilistic rules
® Pheromone concentrations encode collective knowledge

Pheromone guides Probabilistic builds Complete
Matrix 7 Construction Solution

evaluates

modifies

Pheromone
Update

52

ACO: Pheromone Trail Representation

Pheromone Trail Structure:

e Components: Problem-specific building blocks (cities, jobs, edges)
® Connections: Pheromone 7; on transitions between components
® Meaning: 7; = learned desirability of choosing j after /

(7] [ny1”

Sen e T Where:

Construction Rule (general form): p; =

7; = pheromone trail (learned)

n; = heuristic information (problem-specific)

a, f = parameters balancing exploration vs. exploitation
N; = feasible components from state i

Pheromone Update: 7; (1 — p)7; + >, A7)/, where p = evaporation rate, A7)
= pheromone deposited by ant k on selection sequence (/,j) (according to

solution quality). .

ACO Example 1: Traveling Salesman Problem

Problem: Find shortest tour visiting all cities exactly once.

Components: Cities {1,2,...,n}
Pheromone Trails: 7; = desirability of traveling from city / to city j
Heuristic Information: 7; = dl,]- (inverse of distance)

Construction Process:
1. Start at random city

2. While unvisited cities remain:

® Calculate probabilities for unvisited cities
® Select next city probabilistically
® Move to selected city

3. Return to starting city

54

ACO Example 2: Job Shop Scheduling

Problem: Schedule jobs on machines to minimize makespan.

Components: Operations (/,/) where job j needs machine /
Pheromone Trails: 7,) = desirability of scheduling operation (k, £) after
(1)

Heuristic Information: 7, = K% (inverse processing time)

Construction Process:

1. Initialize: All machines idle, all operations ready
2. While unscheduled operations exist:
¢ |dentify schedulable operations (precedence constraints satisfied)
Calculate selection probabilities using 7 and 5
Select operation probabilistically
Schedule operation and update machine/job states

Representation Insight. Pheromone encodes good operation sequencing
patterns. 55

ACO: Construction Graph Design

Key Design Decisions for ACO Representations:

* What are the components?

® Atomic decision elements
® Example: Cities (TSP), tasks (scheduling), items (selection)

e What are the connections?

® How components can be combined

® Example: City-to-city transitions, operation sequences
* How to handle constraints?

® |mplicit: Only allow feasible components in N;
® Explicit: Penalize constraint violations

¢ What heuristic information to use?

® Problem-specific greedy guidance
® Example: Distance, processing time, cost

ACO Representation Principle

The construction graph should naturally encode the problem structure and
allow incremental solution building.

56

Representation Design Principles

Fundamental Principles

o s W -

Completeness: All valid solutions should be representable
Soundness: All representations should decode to valid solutions
Non-redundancy: Minimize multiple encodings for same solution
Locality: Small changes in encoding - small changes in solution

Constraint compatibility: Representation should align with constraint
structure

Practical Steps:

Analyze constraint types and relationships
Identify which constraints can be made implicit
Consider problem decomposition possibilities
Test multiple representations empirically

Measure search space characteristics 57

Common Pitfalls and How to Avoid Them

* Over-engineering:
® Problem: Too complex representations
® Solution: Start simple, add complexity only when justified
¢ Ignoring constraints:
® Problem: All constraints handled explicitly
® Solution: Build constraints into representation structure
® Poor scalability:
® Problem: Representation doesn’t scale with problem size
® Solution: Test on problems of different sizes early
* Algorithm mismatch:
® Problem: Representation incompatible with chosen operators
® Solution: Co-design representation and operators

Golden Rule

The best representation makes your problem easier to solve, not harder to
encode

58

Key Takeaways

¢ Representation is fundamental - it often matters more than algorithm

choice

® Constraints are your guide - use them to shape your representation
design

* Multiple viewpoints exist for every problem - explore different
perspectives

® Search space size matters - smaller, more focused spaces usually
perform better

¢ Implicit constraint handling is almost always better than explicit

* No silver bullet - the best representation is problem-specific

e Empirical validation is essential - test your design choices

Take home message

A Good representation design can transform an intractable problem
into a solvable onel! 59

Thank You!

Questions?

60

Acknowledgments

This presentation is based upon work from COST Action Ran-
domised Optimisation Algorithms Research Network (ROAR-
NET), CA22137, supported by COST (European Cooperation in
Science and Technology).

COST (European Cooperation in Science and Technology) is a fund-
ing agency for research and innovation networks. Our Actions help
connect research initiatives across Europe and enable scientists to
grow their ideas by sharing them with their peers. This boosts their
research, career and innovation.

o COs E e .

References

C. A. Coello Coello.

Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art.

Computer Methods in Applied Mechanics and Engineering,
191(11-12):1245-1287, 2002.

A. E. Eiben and J. E. Smith.
Introduction to Evolutionary Computing.
Springer-Verlag, Berlin, 2nd edition, 2015.

M. Gendreau and J.-Y. Potvin, editors.

Handbook of metaheuristics.

International Series in Operations Research & Management Science.
Springer International Publishing, Basel, Switzerland, 3 edition, Sept. 2018.

62

References

J. F. Gongalves and M. G. C. Resende.
Biased random-key genetic algorithms for combinatorial optimization.
Journal of Heuristics, 17(5):487-525, 2011.

R. Marti, P. Panos, and M. Resende, editors.
Handbook of heuristics.
Handbook of Heuristics. Springer International Publishing, Basel,
Switzerland, 1 edition, Nov. 2016.

ROAR-NET API Contributors.
Roar-net api python implementation.
https://github.com/roar-net/roar-net-api-py, 2025.
Accessed: 2025-06-15.

63

https://github.com/roar-net/roar-net-api-py

References

@ ROAR-NET API Contributors.
Roar-net api specification.
https://github.com/roar-net/roar-net-api-spec, 2025.
Accessed: 2025-06-15.

W F. Rothlauf.
Representations for Genetic and Evolutionary Algorithms, volume 104 of
Studies in Fuzziness and Soft Computing.
Springer-Verlag, Berlin, 2nd edition, 2006.

[l F Rothlauf.
Design of modern heuristics.
Natural Computing Series. Springer, Berlin, Germany, 2011 edition, July
2011.

64

https://github.com/roar-net/roar-net-api-spec

	Core Concepts and Examples
	Decision Variables
	Constraints
	N-Queens Problem
	Nurse Scheduling Problem
	Portfolio Optimization
	Objective Function
	Symmetry and Redundancy

	ROAR-NET API Representation
	Direct vs. Indirect Representations
	Represenation in Algorithmic Frameworks
	Biased Random Key Genetic Algorithms
	Binary Chromosome Representation for GAs
	Ant Colony Optimization Representations

	Practical Guidelines
	Conclusion
	References

