COST Action CA22137

2023-2027

o‘*R\
Q-
Tg

OOOOOOOOOOOOOOOOOOO
NNNNNNNNNNNNNNNNNNNN

/i

Optimisation and
Modelling

First ROAR-NET Training School

Carlos M. Fonseca
University of Coimbra
Portugal



Outline

® Problem solving

® Optimisation

® Metaheuristics

® Modelling

e Constructive search
® | ocal search

® \Worked examples

e Concluding remarks



Problem solving

Solution



Problem solving

m
1]

Problem



Problem solving

()
— l —
Sy,

Computer Solution




Optimisation

Real-world problems are typically described in natural language first
e Qualitative, imprecise, ambiguous, incomplete, ...

Many such problems involve the idea of doing well, doing better than before,
or even the best possible

® Optimisation problems!

To solve an optimisation problem on a computer, a formal characterisation is
required, including:

e A specification of the space of alternative solutions (solution space, or
decision space)

e A means of evaluating the performance of those solutions
® The data that specifies the particular problem instance of interest
= Problem statement!



Optimisation

Depending on the nature of the decision space, optimisation problems are
usually classified as:
Numerical problems Solutions are numbers, or vectors with numeric
components, and solution performance is quantified in terms of an objective
function (or functions)
Continuous Solutions range over a continuous set, such as a continuous
subset of R"
Discrete Solutions range over a discrete set, such as a possibly infinite
subset of Z”
Mixed Solutions are vectors with both continuous and discrete numeric
components
Combinatorial problems Solutions are elements of a finite, discrete set, and
can be interpreted as subsets of a ground set of solution components
> Combinatorial optimisation problems can usually be posed as discrete
numerical problems .



Optimisation

Problem solving strategies

The choice of solution strategy depends on the nature and type of the
optimisation problem at hand, but also on how much information about the
problem is available to the solver:

Glass box The mathematical formulation of the problem is fully available
to, and can be directly manipulated by, the solver. The simplex method
and most mixed integer-linear and constraint programming solvers are of
this type

Black box The mathematical formulation of the problem is not available
to the solver, which is restricted to evaluating the objective function at
discrete points in the solution space. Higher-order black-box methods
involve evaluating objective function derivatives at given solutions, as well.



Optimisation

Black-box problem-solving strategies (for combinatorial
optimisation)
Random search Guess! However, ...

® Even generating a feasible solution may be hard

Constructive search Build a solution from scratch by starting with an empty
solution and successively adding components to it

e A partial solution represents all feasible solutions that can be
constructed from it

Local search Try to improve an existing (feasible) solution by modifying it
® Small changes to a solution should lead to small changes to its quality
Hybrid / other ...



Optimisation

Exact and heuristic optimisation algorithms
Constructive search Backtracking, dynamic programming, branch and
bound, ant colony optimisation, beam search, GRASP, ...

Local search Greedy/stochastic descent, evolutionary algorithms, memetic
algorithms, particle-swarm optimisation, differential evolution, simulated
annealing, tabu search, iterated local search, GRASP, ...
> But are evolutionary algorithms not global optimisation methods? What
about crossover???
> What neighbourhood does an evolutionary algorithm explore?
> What (local) optimisation problem do constructive-search algorithms
actually solve?



Metaheuristics

“.. metaheuristics are algorithms that combine heuristics (that are usually
very problem-specific) in a more general framework.” (Bianchi et al., 2009)

Evolutionary algorithms
® Inspired by the process of natural selection and genetic evolution
® Emphasis on solution representation

® Problem-specific search operators

- Recombination (crossover)
- Mutation



Metaheuristics

Simulated annealing
® Inspired in the physical process of cooling a material down slowly to
improve its properties
® First-improvement local search with probabilistic degradation acceptance
Tabu search

® First-improvement local search with least-degradation acceptance in
case of no improvement

® Problem-specific short-term memory mechanism to avoid looping

® Problem-specific long-term memory (construction) mechanism to seed
the local search



Metaheuristics

Iterated local search
e Strategy designed to exploit the big-valley hypothesis
® | ocal search in the space of local optima
® Problem-specific perturbation mechanism

Beam search
e Breadth-first constructive search with breadth constraint (beam width, 3)
® Best 8 nodes retained at each level
® 3 =1 amounts to greedy construction



Metaheuristics

Ant colony optimisation
¢ Inspired in the foraging behaviour of ants

® Solution construction based on a pheromone-based communication
mechanism and heuristic information

e Construction typically followed by local search

Greedy Randomised Adaptive Search Procedure (GRASP)
e “Soft” greedy randomised construction
e Typically followed by local search



Metaheuristics

Common practice

® \When addressing a new problem

- Choose favourite family of metaheuristics

- Design (new?) problem-specific search operators

- Produce a “new algorithm” for that problem
® Most metaheuristic software frameworks support this view
® | imitations

- End users must also be familiar with the algorithms
- Problem-specific developments tied to a particular algorithm



Problem solving with metaheuristics (so far)

Metaheuristic Solution



Problem solving with metaheuristics (vision)

® General-purpose black-box solvers rather then dedicated algorithms
® Problem modelling fully separated from solver specification

® £nd users oblivious to the inner workings of the solvers

e Underlying modelling paradigm, training

® Built-in performance features

® The same model for many solvers

e Solvers transparently operate on all problems of the appropriate type

17



Problem solving with metaheuristics (vision)

Computer



Problem solving with metaheuristics (vision)

T
Computer Solver Solution

g



Problem solving with metaheuristics (vision)

Why?

® The value of optimisation is realised at the user end

® £nd users care about finding solutions

® Modelling empowers users to solve their own problems
® Metaheuristic solvers as software products

® Solvers are only as good as the solutions they produce and how quickly
they produce them

® General-purpose solver development as a new avenue for research

20



Problem solving with metaheuristics (vision)

How?

21



Modelling

22



Modelling

Modelling is the process leading from

® a natural language description of a real-world problem
to

® o mathematical formulation

that can be analysed and/or solved using mathematical or computational
tools

> The model depends on the problem and on the type of solver

> Solvers applied to different models of the same (global) optimisation
problem are actually operating on different (local-search,
constructive-search) problems!

> Not all models of the same (global) optimisation problem are equally
easy to solve

23



Modelling

Problem-modelling approaches
Decomposition Decompose the original problem into subproblems that can
be solved separately

Proxy function Consider a related objective function that can be evaluated or
optimised more easily

® May miss the optimum of the original problem
Restriction Narrow down the decision space

e Solutions may become easier to find

® May miss the optimum of the original problem

Relaxation £nlarge the decision space, allowing it to contain (some)
infeasible solutions

e Solutions to the relaxed problem may become easier to find

e Solutions found may need to be “corrected” or “repaired”
24



Constructive search

Modelling a combinatorial optimisation problem as a constructive search
problem begins with asking and answering questions

Problem instance \What (known) data is required to fully characterise an
instance of the problem?

Solution What (unknown) data is required to fully characterise a (feasible)
solution?

Objective function How can the performance of a given candidate solution
be measured? Is the corresponding value to be minimised or maximised?

25



Constructive search

Combinatorial structure \What is a partial or incomplete solution?

e Solutions as subsets of a larger ground set of solution components

e Partial solutions as a representation of all feasible solutions that contain
them

e Not all subsets of components are valid (partial) solutions
> Construction rule

e Performance of partial solutions inferred from the sets of solutions which
they represent

> Lower bound (minimisation) or upper bound (maximisation)

26



Constructive search

Computational model

Problem instance representation How can the problem instance data be
stored in a data structure so that the objective function and corresponding
bounds can be easily computed?

Solution representation How can (possibly partial) solutions be represented
so that

® Objective function values (where applicable) and related bounds can be
computed efficiently?

® Feasible solutions can be easily constructed by successively adding
components?

Solution evaluation How can the objective function and/or corresponding
bounds be computed given the instance data and the solution
representation?

27



Constructive search

Computational model

Move representation How can moves be represented, i.e., the addition or
removal of components to/from a (partial) solution?

Solution modification \What are valid moves, and how are they applied to a
solution?

Incremental solution evaluation \When an evaluated (partial) solution is
modified by applying one or more moves to it, can the resulting solution be
evaluated faster? How?

Move evaluation How would applying a move to a solution change its
performance? Which is faster:

e Evaluating the move without actually applying it, or

e Evaluating the original solution, applying the move, and then evaluating
the result?
28



Local search

Modelling a combinatorial optimisation problem as a (ocal search problem
also begins with asking and answering questions

Problem instance \What (known) data is required to fully characterise an
instance of the problem?

Solution What (unknown) data is required to fully characterise a (feasible)
solution®?

Objective function How can the performance of a given candidate solution
be measured? Is the corresponding value to be minimised or maximised?

29



Local search

Neighbourhood structure \What are similar solutions?
e “Parts” of the two solutions are somehow identical
e Similar performance (in most cases)
® Connect the whole space

Example 1 Symmetric Travelling Salesman Problem

e Tour length is the sum of the lengths of the tour edges
e Solutions are similar if they differ in a small number of edges
® 2-opt and 3-opt moves

30



Local search

Example 2

Asymmetric Travelling Salesman Problem

® Tour length is the sum of the lengths of the tour arcs
e Solutions are similar if they differ in a small number of arcs

® Due to asymmetry, 2-opt moves and some 3-opt moves are not suitable
because they reverse parts of the tour

® |nsertion move as a special case of 3-opt

31



Local search

Computational model

Problem instance representation How can the problem instance data be
stored in a data structure so that the objective function can be easily
computed?

Solution representation How can solutions be represented so that
® Objective function values can be computed efficiently?
e Solutions can be easily modified to obtain neighbouring solutions?

Solution evaluation How can the objective function be computed given the
instance data and the solution representation?

32



Local search

Computational model

Move representation How can moves be represented, i.e., changes that,
when applied to a solution, lead to a neighbouring solution?

Solution modification \What are valid moves, and how are they applied to a
solution?

Incremental solution evaluation \When an evaluated solution is modified by
applying one or more moves to it, can the resulting solution be evaluated
faster? How?

Move evaluation How would applying a move to a solution change its
performance? Which is faster:

e Evaluating the move without actually applying it, or

e Evaluating the original solution, applying the move, and then evaluating

the result?
33



Local search

Neighbourhood exploration
Local search in a nutshell
1. Visit neighbours of a current solution

2. Decide whether to reject them or to accept one as the next solution
3. Repeat

Local move generation
® Fnumeration
e Random sampling with replacement
e Random sampling without replacement

34



Local search

Local move enumeration

e Full neighbourhood exploration

® Enumeration order dictated by convenience

e Filter out invalid moves if needed

® Neighbourhood size may not be known in advance

Random sampling with replacement

e Sampling uniformly at random typically preferred

® Rejection sampling useful when neighbourhood size not known in
advance

35



Local search

Random sampling without replacement

Partial to full neighbourhood exploration

Random enumeration order to avoid search bias

Filter out invalid moves if needed (rejection)

Neighbourhood size may not be known in advance
Generating (pseudo-)random permutations

- Fisher-vates shuffle
- Linear congruential generator (low quality but constant space)
- A plethora of other approaches

36



Concluding remarks

® Modelling before solving!

e Different types of solvers require different models

® Metaheuristics usually incorporate both a model and a search algorithm
® Modelling abstractions

® | anguage-independent modelling API specification

® APl implementations in different languages

® ROAR-NET is a community-building effort

37



Acknowledgments

This presentation is based upon work from COST Action Ran-
domised Optimisation Algorithms Research Network (ROAR-
NET), CA22137, supported by COST (European Cooperation in
Science and Technology).

This work is funded by national funds through FCT — Foundation for
Science and Technology, I.P, within the scope of the research unit
UID/00326 — Centre for Informatics and Systems of the University
of Coimbra

EUROPEAN COOPERATION
IN SCIENCE & TECHNOLOGY

o COs [T C
the Eur
Fundagao
para a Ciéncia
1

e c a Tecnologia 38



	Outline
	Problem solving
	Optimisation
	Metaheuristics

