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Outline

• Multiobjective Optimization

• Preference Articulation

• Solving Multiobjective Optimisation Problems

• Performance Assessment

• API extension to Multiobjective Optimisation

• Concluding Remarks
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Examples

• Book an hotel room
• Cheapest, most comfortable, closest to the city center

• Transport for travelling from home to work
• Cheapest, fastest

Taxi

Uber

TVDE

Bolt

co
st

time
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Multiobjective Optimisation

• Considering minimisation:

min
x∈Ω

f(x) = (f1(x), f2(x), . . . , fd(x))

Pareto-optimal set Pareto-optimal front

(Efficient set) (the nondominated set)

Taxi

Uber

TVDE

Bolt

Ω
f2(x)

f1(x)

Rd

Decision Space Objective Space
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Dominance Relations

Given u, v ∈ Rd :

• u weakly dominates v (u ≤ v)
• If ui ≤ vi for all 1 ≤ i ≤ d

• u (strictly) dominates v (u < v)
• If u ≤ v and v � u

• u stongly dominates v (u � v)
• If ui < vi for all 1 ≤ i ≤ d

Given A ⊂ Rd and u ∈ A:

• u is a nondominated point
• If there is no v ∈ A such that v < u

f2(x)

f1(x)
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Set-Dominance Relations

Given A,B ⊂ Rd :

• A weakly dominates B (A � B)
• If ∀b∈B∃a∈A : a ≤ b

• A (strictly) dominates B (A ≺ B)
• If A � B and B 6� A

• A (strictly) dominates B elementwise (A ≺· B)
• If ∀b∈B∃a∈A : a < b

• A strongly dominates B (A ≺≺ B)
• If ∀b∈B∃a∈A : a � b

f2(x)

f1(x)
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Decision Making

• Conflicting objectives
• Pareto-optimal front

• Usually not known
• Possible infinite

• The best solution depends on the Decision Maker (DM) preferences
• Subjective information

f2(x)

f1(x)
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Preference Information

• Helps discriminate between incomparable solutions

• May be provided at different stages of the optimisation process

• Optimisation methods are classified according to when it is articulated

1. No-preference methods

• DM has no expectations
• Return a (any) Pareto-optimal solution

2. A posteriori methods

• Return the full or an approximation of the Pareto front
• DM then selects the most preferable solution

3. Interactive/progressive methods

• DM periodically expresses preferences during the optimisation process
• the search progresses towards the most preferable solution

4. A priori methods

• DM provides preference information pior to the optimisation
• Focus on solutions on the preferable regions
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Preference Articulation as a Process

• The optimisation process does not have to be static

• Preference articulation can be viewed as a process

DM OAa priori
knowledge

objective values 

preference information 

(aquired knowledge)

results
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Preference Modelling

Useful for

• Favouring one of two incomparable solutions

• Handling constraints

Methods
• Utility/scalarisation functions

• Function that maps each solution to a value
• Examples

• Weight-based (such as weighted sum)
• reference-point based

• Binary relation

• Pairwise comparison between solution
• Some solutions may remain incomparable
• Should respect Pareto dominance
• Examples

• lexicographic order
• preferability relation
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Approaches

• Aim of (a posteriori) multiobjective optimisation algorithms

1. Find the whole Pareto front

2. Find a ”good” subset of the Pareto front (a representation)

3. Find a ”good” approximation of the Pareto front

• Guarantees regarding the outcome set

• The quality of each solution

• is it efficient or not?

• The quality of the set of solutions

• How well does it cover the Pareto front?
• How well are the points distributed along the Pareto front?
• Does it provide an approximation guarantee?

• Provide bounds on the location of the Pareto front
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Properties of Quality Indicators

• Monotonicity
• Given a set-dominance relation R (e.g.: weak dominance, �)

• A set-indicator I is weakly R-monotonic if, given two point sets A,B ⊂ Rd ,
A R B implies I(A) ≥ I(B).

• I is weakly �-monotonic

• If A R B implies I(A) > I(B), the indicator is strictly R-monotonic
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Properties of Quality Indicators

• Optimal µ-distributions
• Characterize the indicator-optimal subsets of

size up to µ
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• Uniqueness
• Connection to the Pareto front
• Monotonicity with respect to µ
• Influence of parameters
• Distribution
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Properties of the Hypervolume Indicator

• Scaling independent
• The order defined by the hypervolume indicator is preserved under linear

scaling transformations of the objective space

• Strictly monotonic with respect to (strict) set-dominance (≺)
• Given two point sets A,B ⊂ Rd , if A ≺ B then I(A) > I(B)

• All solutions in an optimal subset are Pareto-optimal solutions

• Optimal µ-distributions
• Ex.: The points in an optimal subset of a two-dimensional continuous linear

Pareto front are evenly spaced

f1(x)

f2(x)
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f2(x)

A1 = {×}, B1 = { } A2 = {×}, B2 = { }
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• Allows the distribution of the outcomes of different runs of an

optimisation algorithm to be studied in terms of location

• Example with 3 runs
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API extension to Multiobjetive Optimisation

Only affects solution evaluation:

objective_value(Solution) : double[0..1]
objective_value_increment(Move, Solution) : double[0..1]

Considers new abstract types Value and Increment:

objective_value(Solution) : Value[0..1]
objective_value_increment(Move, Solution) : Increment[0..1]
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API extension to Multiobjetive Optimisation

New type: PreferenceModel
Scalarisations:

scalarisation(PreferenceModel, Value): real

Preference relations:

better_or_indifferent(PreferenceModel, Value, Value): boolean
better(PreferenceModel, Value, Value): boolean
indifferent(PreferenceModel, Value, Value): boolean
incomparable(PreferenceModel, Value, Value): boolean

compare(PreferenceModel, Value, Value):
{Better | Worse | Indifferent}

compare_partial(PreferenceModel, Value, Value):
{Better | Worse | Indifferent | Incomparable}
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API extension to Multiobjetive Optimisation

Other non-scalarising approaches

selection(PreferenceModel, Value[0..*], n=None) : int[0..*]
ranking(PreferenceModel, Value[0..*]) : int[0..*]
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Concluding Remarks

• Solving multiobjective optimisation problem poses challenges

• Size of the Pareto front
• Unknown preferences
• Preference modelling

• It is important to understand

• The implication of each algorithmic approach

• Biases towards (sets of) solutions
• Guarantees regarding the quality of the outcome set

• The theoretical properties of quality indicators and their implications

• Leads to better usage of optimisation algorithms and performance

assessment tools

• The API allows to incorporate different models of preferences
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Thanks!
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