

# Multiobjective Optimisation

1st ROAR-NET Training School

Andreia P. Guerreiro INESC-ID, Portugal





# Outline



- Multiobjective Optimization
- Preference Articulation
- Solving Multiobjective Optimisation Problems
- Performance Assessment
- API extension to Multiobjective Optimisation
- Concluding Remarks

# Examples



- Book an hotel room
  - Cheapest, most comfortable, closest to the city center

# **Examples**

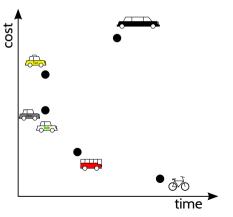


- Book an hotel room
  - Cheapest, most comfortable, closest to the city center
- Transport for travelling from home to work
  - Cheapest, fastest

# Examples



- Book an hotel room
  - Cheapest, most comfortable, closest to the city center
- Transport for travelling from home to work
  - Cheapest, fastest

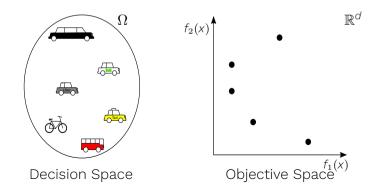


# **Multiobjective Optimisation**



• Considering minimisation:

$$\min_{x \in \Omega} f(x) = (f_1(x), f_2(x), \dots, f_d(x))$$

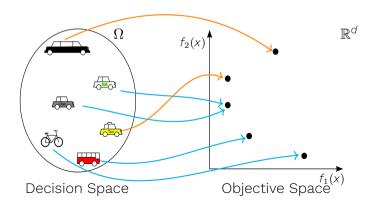


# **Multiobjective Optimisation**



• Considering minimisation:

$$\min_{x \in \Omega} f(x) = (f_1(x), f_2(x), \dots, f_d(x))$$

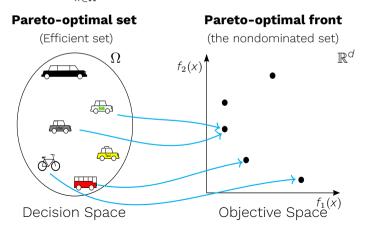


# **Multiobjective Optimisation**

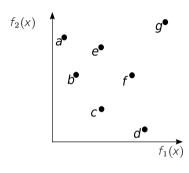


• Considering minimisation:

$$\min_{x \in \Omega} f(x) = (f_1(x), f_2(x), \dots, f_d(x))$$

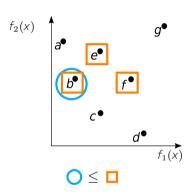






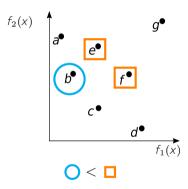


- u weakly dominates v ( $u \le v$ )
  - If  $u_i \le v_i$  for all  $1 \le i \le d$



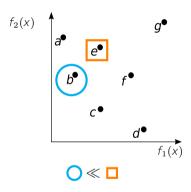


- u weakly dominates v ( $u \le v$ )
  - If  $u_i \le v_i$  for all  $1 \le i \le d$
- u (strictly) dominates v (u < v)
  - If  $u \le v$  and  $v \nleq u$





- u weakly dominates v ( $u \le v$ )
  - If  $u_i \le v_i$  for all  $1 \le i \le d$
- u (strictly) dominates v (u < v)
  - If  $u \le v$  and  $v \not \le u$
- u stongly dominates v ( $u \ll v$ )
  - If  $u_i < v_i$  for all  $1 \le i \le d$



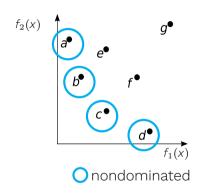


#### Given $u, v \in \mathbb{R}^d$ :

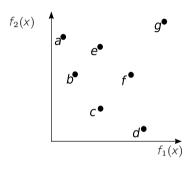
- u weakly dominates v ( $u \le v$ )
  - If  $u_i \le v_i$  for all  $1 \le i \le d$
- u (strictly) dominates v (u < v)
  - If  $u \le v$  and  $v \not \le u$
- u stongly dominates v ( $u \ll v$ )
  - If  $u_i < v_i$  for all  $1 \le i \le d$

#### Given $A \subset \mathbb{R}^d$ and $u \in A$ :

- u is a nondominated point
  - If there is no  $v \in A$  such that v < u

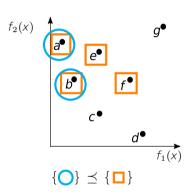






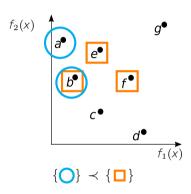


- A weakly dominates  $B (A \leq B)$ 
  - If  $\forall_{b \in B} \exists_{a \in A} : a \leq b$



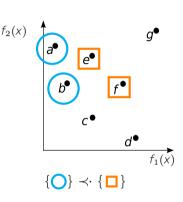


- A weakly dominates  $B (A \leq B)$ 
  - If  $\forall_{b \in B} \exists_{a \in A} : a \leq b$
- A (strictly) dominates  $B (A \prec B)$ 
  - $\bullet \ \ \text{If} \ A \preceq B \ \text{and} \ B \not \preceq A$



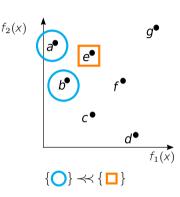


- A weakly dominates  $B (A \leq B)$ 
  - If  $\forall_{b \in B} \exists_{a \in A} : a \leq b$
- A (strictly) dominates  $B (A \prec B)$ 
  - If  $A \leq B$  and  $B \not \leq A$
- A (strictly) dominates B elementwise (A  $\prec$ · B)
  - If  $\forall_{b \in B} \exists_{a \in A} : a < b$





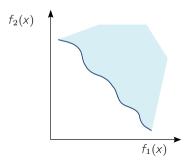
- A weakly dominates  $B (A \leq B)$ 
  - If  $\forall_{b \in B} \exists_{a \in A} : a \leq b$
- A (strictly) dominates  $B (A \prec B)$ 
  - If  $A \leq B$  and  $B \not\leq A$
- A (strictly) dominates B elementwise (A  $\prec$ · B)
  - If  $\forall_{b \in \mathbf{B}} \exists_{a \in \mathbf{A}} : a < b$
- A strongly dominates  $B (A \prec\!\!\prec B)$ 
  - If  $\forall_{b \in B} \exists_{\alpha \in A} : \alpha \ll b$



# **Decision Making**



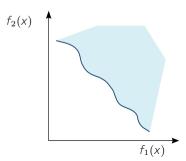
- Conflicting objectives
  - Pareto-optimal front
    - Usually not known
    - Possible infinite



# **Decision Making**



- Conflicting objectives
  - Pareto-optimal front
    - Usually not known
    - Possible infinite
- The best solution depends on the Decision Maker (DM) preferences
  - Subjective information





• Helps discriminate between incomparable solutions



- Helps discriminate between incomparable solutions
- May be provided at different stages of the optimisation process



- Helps discriminate between incomparable solutions
- May be provided at different stages of the optimisation process
- Optimisation methods are classified according to when it is articulated



- Helps discriminate between incomparable solutions
- May be provided at different stages of the optimisation process
- Optimisation methods are classified according to when it is articulated
  - 1. **No-preference** methods



- Helps discriminate between incomparable solutions
- May be provided at different stages of the optimisation process
- Optimisation methods are classified according to when it is articulated
  - 1. **No-preference** methods
    - DM has no expectations



- Helps discriminate between incomparable solutions
- May be provided at different stages of the optimisation process
- Optimisation methods are classified according to when it is articulated
  - 1. **No-preference** methods
    - DM has no expectations
    - Return a (any) Pareto-optimal solution



- Helps discriminate between incomparable solutions
- May be provided at different stages of the optimisation process
- Optimisation methods are classified according to when it is articulated
  - 1. **No-preference** methods
    - DM has no expectations
    - Return a (any) Pareto-optimal solution
  - 2. A posteriori methods



- Helps discriminate between incomparable solutions
- May be provided at different stages of the optimisation process
- Optimisation methods are classified according to when it is articulated
  - 1. **No-preference** methods
    - DM has no expectations
    - Return a (any) Pareto-optimal solution
  - 2. A posteriori methods
    - Return the full or an approximation of the Pareto front



- Helps discriminate between incomparable solutions
- May be provided at different stages of the optimisation process
- Optimisation methods are classified according to when it is articulated
  - 1. **No-preference** methods
    - DM has no expectations
    - Return a (any) Pareto-optimal solution
  - 2. A posteriori methods
    - Return the full or an approximation of the Pareto front
    - DM then selects the most preferable solution



- Helps discriminate between incomparable solutions
- May be provided at different stages of the optimisation process
- Optimisation methods are classified according to when it is articulated
  - 1. **No-preference** methods
    - DM has no expectations
    - Return a (any) Pareto-optimal solution
  - 2. A posteriori methods
    - Return the full or an approximation of the Pareto front
    - DM then selects the most preferable solution
  - 3. **Interactive/progressive** methods



- Helps discriminate between incomparable solutions
- May be provided at different stages of the optimisation process
- Optimisation methods are classified according to when it is articulated
  - 1. **No-preference** methods
    - DM has no expectations
    - Return a (any) Pareto-optimal solution
  - 2. A posteriori methods
    - Return the full or an approximation of the Pareto front
    - DM then selects the most preferable solution
  - 3. **Interactive/progressive** methods
    - DM periodically expresses preferences during the optimisation process



- Helps discriminate between incomparable solutions
- May be provided at different stages of the optimisation process
- Optimisation methods are classified according to when it is articulated
  - 1. **No-preference** methods
    - DM has no expectations
    - Return a (any) Pareto-optimal solution
  - 2. A posteriori methods
    - Return the full or an approximation of the Pareto front
    - DM then selects the most preferable solution
  - 3. Interactive/progressive methods
    - DM periodically expresses preferences during the optimisation process
    - the search progresses towards the most preferable solution



- Helps discriminate between incomparable solutions
- May be provided at different stages of the optimisation process
- Optimisation methods are classified according to when it is articulated
  - 1. **No-preference** methods
    - DM has no expectations
    - Return a (any) Pareto-optimal solution
  - 2. A posteriori methods
    - Return the full or an approximation of the Pareto front
    - DM then selects the most preferable solution
  - 3. Interactive/progressive methods
    - DM periodically expresses preferences during the optimisation process
    - the search progresses towards the most preferable solution
  - 4. A priori methods



- Helps discriminate between incomparable solutions
- May be provided at different stages of the optimisation process
- Optimisation methods are classified according to when it is articulated
  - 1. **No-preference** methods
    - DM has no expectations
    - Return a (any) Pareto-optimal solution
  - 2. A posteriori methods
    - Return the full or an approximation of the Pareto front
    - DM then selects the most preferable solution
  - 3. Interactive/progressive methods
    - DM periodically expresses preferences during the optimisation process
    - the search progresses towards the most preferable solution
  - 4. A priori methods
    - DM provides preference information pior to the optimisation

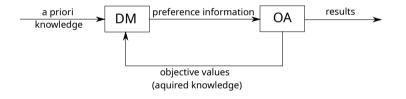


- Helps discriminate between incomparable solutions
- May be provided at different stages of the optimisation process
- Optimisation methods are classified according to when it is articulated
  - 1. **No-preference** methods
    - DM has no expectations
    - Return a (any) Pareto-optimal solution
  - 2. A posteriori methods
    - Return the full or an approximation of the Pareto front
    - DM then selects the most preferable solution
  - 3. Interactive/progressive methods
    - DM periodically expresses preferences during the optimisation process
    - the search progresses towards the most preferable solution
  - 4. A priori methods
    - DM provides preference information pior to the optimisation
    - Focus on solutions on the preferable regions

# Preference Articulation as a Process



- The optimisation process does not have to be static
- Preference articulation can be viewed as a process





#### Useful for

• Favouring one of two incomparable solutions



#### Useful for

- Favouring one of two incomparable solutions
- Handling constraints



#### Useful for

- Favouring one of two incomparable solutions
- Handling constraints

- Utility/scalarisation functions
  - Function that maps each solution to a value
  - Examples



#### Useful for

- Favouring one of two incomparable solutions
- Handling constraints

- Utility/scalarisation functions
  - Function that maps each solution to a value
  - Examples
    - Weight-based (such as weighted sum)



#### Useful for

- Favouring one of two incomparable solutions
- Handling constraints

- Utility/scalarisation functions
  - Function that maps each solution to a value
  - Examples
    - Weight-based (such as weighted sum)
    - reference-point based



#### Useful for

- Favouring one of two incomparable solutions
- Handling constraints

- Utility/scalarisation functions
  - Function that maps each solution to a value
  - Examples
    - Weight-based (such as weighted sum)
    - reference-point based
- Binary relation



#### Useful for

- Favouring one of two incomparable solutions
- Handling constraints

- Utility/scalarisation functions
  - Function that maps each solution to a value
  - Examples
    - Weight-based (such as weighted sum)
    - reference-point based
- Binary relation
  - Pairwise comparison between solution



#### Useful for

- Favouring one of two incomparable solutions
- Handling constraints

- Utility/scalarisation functions
  - Function that maps each solution to a value
  - Examples
    - Weight-based (such as weighted sum)
    - reference-point based
- Binary relation
  - Pairwise comparison between solution
  - Some solutions may remain incomparable



#### Useful for

- Favouring one of two incomparable solutions
- Handling constraints

- Utility/scalarisation functions
  - Function that maps each solution to a value
  - Examples
    - Weight-based (such as weighted sum)
    - reference-point based
- Binary relation
  - Pairwise comparison between solution
  - Some solutions may remain incomparable
  - Should respect Pareto dominance



#### Useful for

- Favouring one of two incomparable solutions
- Handling constraints

- Utility/scalarisation functions
  - Function that maps each solution to a value
  - Examples
    - Weight-based (such as weighted sum)
    - reference-point based
- Binary relation
  - Pairwise comparison between solution
  - Some solutions may remain incomparable
  - Should respect Pareto dominance
  - Examples



#### Useful for

- Favouring one of two incomparable solutions
- Handling constraints

- Utility/scalarisation functions
  - Function that maps each solution to a value
  - Examples
    - Weight-based (such as weighted sum)
    - reference-point based
- Binary relation
  - Pairwise comparison between solution
  - Some solutions may remain incomparable
  - Should respect Pareto dominance
  - Examples
    - lexicographic order



#### Useful for

- Favouring one of two incomparable solutions
- Handling constraints

- Utility/scalarisation functions
  - Function that maps each solution to a value
  - Examples
    - Weight-based (such as weighted sum)
    - reference-point based
- Binary relation
  - Pairwise comparison between solution
  - Some solutions may remain incomparable
  - Should respect Pareto dominance
  - Examples
    - lexicographic order
    - preferability relation



• Aim of (a posteriori) multiobjective optimisation algorithms



- Aim of (a posteriori) multiobjective optimisation algorithms
  - 1. Find the whole Pareto front



- Aim of (a posteriori) multiobjective optimisation algorithms
  - 1. Find the whole Pareto front
  - 2. Find a "good" subset of the Pareto front (a representation)



- Aim of (a posteriori) multiobjective optimisation algorithms
  - 1. Find the whole Pareto front
  - 2. Find a "good" subset of the Pareto front (a representation)
  - 3. Find a "good" approximation of the Pareto front



- Aim of (a posteriori) multiobjective optimisation algorithms
  - 1. Find the whole Pareto front
  - 2. Find a "good" subset of the Pareto front (a representation)
  - 3. Find a "good" approximation of the Pareto front
- Guarantees regarding the outcome set



- Aim of (a posteriori) multiobjective optimisation algorithms
  - 1. Find the whole Pareto front
  - 2. Find a "good" subset of the Pareto front (a representation)
  - 3. Find a "good" approximation of the Pareto front
- Guarantees regarding the outcome set
  - The quality of each solution



- Aim of (a posteriori) multiobjective optimisation algorithms
  - 1. Find the whole Pareto front
  - 2. Find a "good" subset of the Pareto front (a representation)
  - 3. Find a "good" approximation of the Pareto front
- Guarantees regarding the outcome set
  - The quality of each solution
    - is it efficient or not?



- Aim of (a posteriori) multiobjective optimisation algorithms
  - 1. Find the whole Pareto front
  - 2. Find a "good" subset of the Pareto front (a representation)
  - 3. Find a "good" approximation of the Pareto front
- Guarantees regarding the outcome set
  - The quality of each solution
    - is it efficient or not?
  - The quality of the set of solutions



- Aim of (a posteriori) multiobjective optimisation algorithms
  - 1. Find the whole Pareto front
  - 2. Find a "good" subset of the Pareto front (a representation)
  - 3. Find a "good" approximation of the Pareto front
- Guarantees regarding the outcome set
  - The quality of each solution
    - is it efficient or not?
  - The quality of the set of solutions
    - How well does it cover the Pareto front?



- Aim of (a posteriori) multiobjective optimisation algorithms
  - 1. Find the whole Pareto front
  - 2. Find a "good" subset of the Pareto front (a representation)
  - 3. Find a "good" approximation of the Pareto front
- Guarantees regarding the outcome set
  - The quality of each solution
    - is it efficient or not?
  - The quality of the set of solutions
    - How well does it cover the Pareto front?
    - How well are the points distributed along the Pareto front?



- Aim of (a posteriori) multiobjective optimisation algorithms
  - 1. Find the whole Pareto front
  - 2. Find a "good" subset of the Pareto front (a representation)
  - 3. Find a "good" approximation of the Pareto front
- Guarantees regarding the outcome set
  - The quality of each solution
    - is it efficient or not?
  - The quality of the set of solutions
    - How well does it cover the Pareto front?
    - How well are the points distributed along the Pareto front?
    - Does it provide an approximation guarantee?



- Aim of (a posteriori) multiobjective optimisation algorithms
  - 1. Find the whole Pareto front
  - 2. Find a "good" subset of the Pareto front (a representation)
  - 3. Find a "good" approximation of the Pareto front
- Guarantees regarding the outcome set
  - The quality of each solution
    - is it efficient or not?
  - The quality of the set of solutions
    - How well does it cover the Pareto front?
    - How well are the points distributed along the Pareto front?
    - Does it provide an approximation guarantee?
  - Provide bounds on the location of the Pareto front



• Solve a sequence of single-objective problems



- Solve a sequence of single-objective problems
  - e.g., Scalarisations



- Solve a sequence of single-objective problems
  - e.g., Scalarisations
- Constructive search approaches



- Solve a sequence of single-objective problems
  - e.g., Scalarisations
- Constructive search approaches
  - e.g., Multiobjective branch-and-bound



- Solve a sequence of single-objective problems
  - e.g., Scalarisations
- Constructive search approaches
  - e.g., Multiobjective branch-and-bound
- Population-based approaches



- Solve a sequence of single-objective problems
  - e.g., Scalarisations
- Constructive search approaches
  - e.g., Multiobjective branch-and-bound
- Population-based approaches
  - e.g., Evolutionary multiobjective optimisation algorithms



• Transform the multiobjective problem into a (parameterised) single-objective problem



- Transform the multiobjective problem into a (parameterised) single-objective problem
- Solve multiple times with different scalarisation parameters

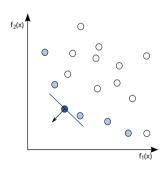


- Transform the multiobjective problem into a (parameterised) single-objective problem
- Solve multiple times with different scalarisation parameters
- Examples of scalarisations



- Transform the multiobjective problem into a (parameterised) single-objective problem
- Solve multiple times with different scalarisation parameters
- Examples of scalarisations
  - Weighted sum scalarisation

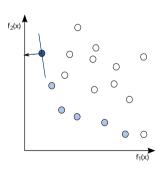
$$\min_{x \in \Omega} \sum_{i=1}^{d} w_i f_i(x)$$





- Transform the multiobjective problem into a (parameterised) single-objective problem
- Solve multiple times with different scalarisation parameters
- Examples of scalarisations
  - Weighted sum scalarisation

$$\min_{x \in \Omega} \sum_{i=1}^{d} w_i f_i(x)$$



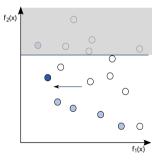


- Transform the multiobjective problem into a (parameterised) single-objective problem
- Solve multiple times with different scalarisation parameters
- Examples of scalarisations
  - Weighted sum scalarisation

$$\min_{\mathbf{x} \in \Omega} \sum_{i=1}^{d} w_i f_i(\mathbf{x})$$

•  $\varepsilon$ -constraint scalarisation

$$\min_{x \in \Omega} f_1(x)$$
s.t.  $f_i(x) \leqslant \varepsilon_i, i = 2, ..., d$ 



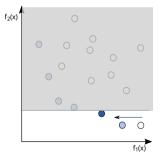


- Transform the multiobjective problem into a (parameterised) single-objective problem
- Solve multiple times with different scalarisation parameters
- Examples of scalarisations
  - Weighted sum scalarisation

$$\min_{x \in \Omega} \sum_{i=1}^{d} w_i f_i(x)$$

•  $\varepsilon$ -constraint scalarisation

$$\min_{\mathbf{x} \in \Omega} f_1(\mathbf{x})$$
  
s.t.  $f_i(\mathbf{x}) \leq \varepsilon_i, i = 2, \dots, d$ 





- Transform the multiobjective problem into a (parameterised) single-objective problem
- Solve multiple times with different scalarisation parameters
- Examples of scalarisations
- Desirable properties



- Transform the multiobjective problem into a (parameterised) single-objective problem
- Solve multiple times with different scalarisation parameters
- Examples of scalarisations
- Desirable properties
  - Correctness: Optimal solutions of a scalarisation are always (weakly) efficient solutions

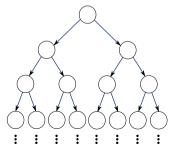


- Transform the multiobjective problem into a (parameterised) single-objective problem
- Solve multiple times with different scalarisation parameters
- Examples of scalarisations
- Desirable properties
  - Correctness: Optimal solutions of a scalarisation are always (weakly) efficient solutions
  - Completeness: Every point in the Pareto front can be determined by an appropriate choice of the parameters



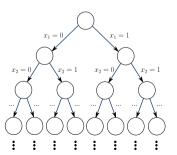
• Branching

Bounding



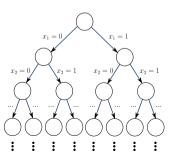


- Branching
  - Branching strategy (e.g., choose next branching variable  $x_i$ )
- Bounding



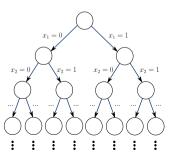


- Branching
  - Branching strategy (e.g., choose next branching variable  $x_i$ )
  - Partitioning procedure (e.g., set branching variable to 0 or 1)
- Bounding



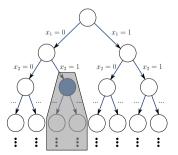


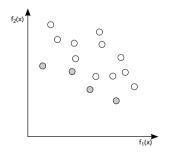
- Branching
  - Branching strategy (e.g., choose next branching variable  $x_i$ )
  - Partitioning procedure (e.g., set branching variable to 0 or 1)
  - Static vs dynamic
- Bounding





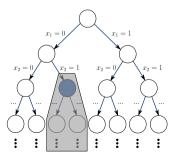
- Branching
  - Branching strategy (e.g., choose next branching variable  $x_i$ )
  - Partitioning procedure (e.g., set branching variable to 0 or 1)
  - Static vs dynamic
- Bounding

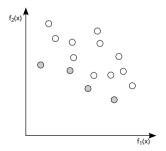






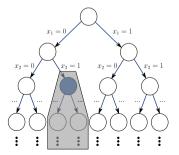
- Branching
  - Branching strategy (e.g., choose next branching variable  $x_i$ )
  - Partitioning procedure (e.g., set branching variable to 0 or 1)
  - Static vs dynamic
- Bounding (in the single-objective case)
  - Lower bound on the objective **values** of the solutions in the subtree

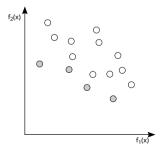






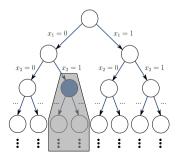
- Branching
  - Branching strategy (e.g., choose next branching variable  $x_i$ )
  - Partitioning procedure (e.g., set branching variable to 0 or 1)
  - Static vs dynamic
- Bounding (in the single-objective case)
  - Lower bound on the objective **values** of the solutions in the subtree
  - Upper bound on the objective **value** of the optimal solution

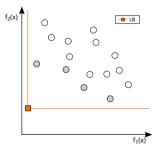






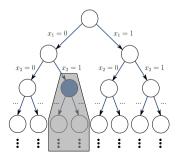
- Branching
  - Branching strategy (e.g., choose next branching variable  $x_i$ )
  - Partitioning procedure (e.g., set branching variable to 0 or 1)
  - Static vs dynamic
- Bounding (in the multiobjective case)
  - Lower bound **set** on the objective **points** of the solutions in the subtree
  - Upper bound set on the Pareto front

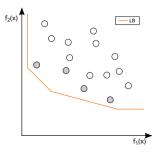






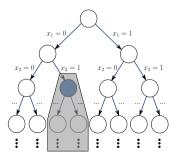
- Branching
  - Branching strategy (e.g., choose next branching variable  $x_i$ )
  - Partitioning procedure (e.g., set branching variable to 0 or 1)
  - Static vs dynamic
- Bounding (in the multiobjective case)
  - Lower bound **set** on the objective **points** of the solutions in the subtree
  - Upper bound set on the Pareto front

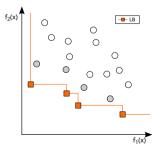






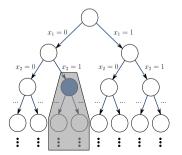
- Branching
  - Branching strategy (e.g., choose next branching variable  $x_i$ )
  - Partitioning procedure (e.g., set branching variable to 0 or 1)
  - Static vs dynamic
- Bounding (in the multiobjective case)
  - Lower bound **set** on the objective **points** of the solutions in the subtree
  - Upper bound set on the Pareto front

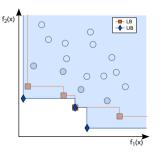






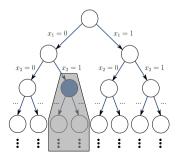
- Branching
  - Branching strategy (e.g., choose next branching variable  $x_i$ )
  - Partitioning procedure (e.g., set branching variable to 0 or 1)
  - Static vs dynamic
- Bounding (in the multiobjective case)
  - Lower bound **set** on the objective **points** of the solutions in the subtree
  - Upper bound set on the Pareto front

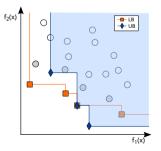






- Branching
  - Branching strategy (e.g., choose next branching variable  $x_i$ )
  - Partitioning procedure (e.g., set branching variable to 0 or 1)
  - Static vs dynamic
- Bounding (in the multiobjective case)
  - Lower bound **set** on the objective **points** of the solutions in the subtree
  - Upper bound set on the Pareto front







- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection



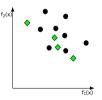
- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection



Initial population (generation 0)



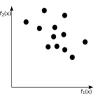
- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection



Generate offspring



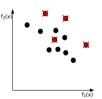
- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection



(Environmental) selection



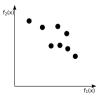
- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection



(Environmental) selection:
Discard solutions



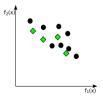
- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection



Population (generation 1)



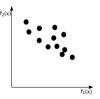
- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection



Generate offspring



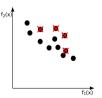
- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection



(Environmental) selection



- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection



(Environmental) selection:
Discard solutions



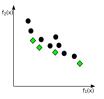
- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection



Population (generation 2)



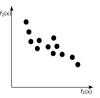
- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection



Generate offspring



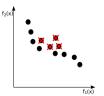
- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection



(Environmental) selection



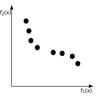
- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection



(Environmental) selection:
Discard solutions



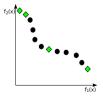
- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection



Population (generation 3)



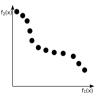
- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection



Generate offspring



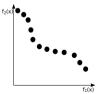
- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection



(Environmental) selection: Which solutions to discard?



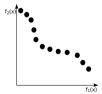
- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection
- Preference information
  - Discriminate incomparable solutions



(Environmental) selection: Which solutions to discard?



- Evolutionary Algorithms (EAs)
  - Inspired on natural selection
  - Well-suited for multiobjective optimisation
  - Search for multiple nondominated solutions simultaneously
    - Generation of new solutions
    - Selection
- Preference information
  - Discriminate incomparable solutions
  - When not available
    - Keep a diverse set of solutions



(Environmental) selection: Which solutions to discard?

#### **Selection in EMO**



• Crucial to the EA's ability to approximate the Pareto front as a whole

#### Selection in EMO



- Crucial to the EA's ability to approximate the Pareto front as a whole
- Main concerns:



- Crucial to the EA's ability to approximate the Pareto front as a whole
- Main concerns:
  - Select the best solutions



- Crucial to the EA's ability to approximate the Pareto front as a whole
- Main concerns:
  - Select the best solutions
  - Keep solutions spread along the Pareto Front



- Crucial to the EA's ability to approximate the Pareto front as a whole
- Main concerns:
  - Select the best solutions
  - Keep solutions spread along the Pareto Front
- Two different approaches:



- Crucial to the EA's ability to approximate the Pareto front as a whole
- Main concerns:
  - Select the best solutions
  - Keep solutions spread along the Pareto Front
- Two different approaches:
  - Focused on individual quality



- Crucial to the EA's ability to approximate the Pareto front as a whole
- Main concerns:
  - Select the best solutions
  - Keep solutions spread along the Pareto Front
- Two different approaches:
  - Focused on individual quality
    - Select the best individuals



- Crucial to the EA's ability to approximate the Pareto front as a whole
- Main concerns:
  - Select the best solutions
  - Keep solutions spread along the Pareto Front
- Two different approaches:
  - Focused on individual quality
    - Select the best individuals
    - Then, use diversity preservation techniques



- Crucial to the EA's ability to approximate the Pareto front as a whole
- Main concerns:
  - Select the best solutions
  - Keep solutions spread along the Pareto Front
- Two different approaches:
  - Focused on individual quality
    - Select the best individuals
    - Then, use diversity preservation techniques
  - Focused on set quality



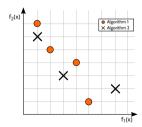
- Crucial to the EA's ability to approximate the Pareto front as a whole
- Main concerns:
  - Select the best solutions
  - Keep solutions spread along the Pareto Front
- Two different approaches:
  - Focused on individual quality
    - Select the best individuals
    - Then, use diversity preservation techniques
  - Focused on set quality
    - Based on (set-)quality indicators



- Crucial to the EA's ability to approximate the Pareto front as a whole
- Main concerns:
  - Select the best solutions
  - Keep solutions spread along the Pareto Front
- Two different approaches:
  - Focused on individual quality
    - Select the best individuals
    - Then, use diversity preservation techniques
  - Focused on set quality
    - Based on (set-)quality indicators
    - ullet Given a set of n solutions find the subset of k solutions that maximizes a given quality indicator

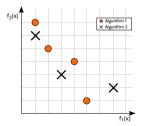


• Different optimisation algorithms usually produce different results



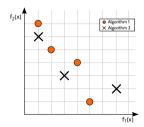


- Different optimisation algorithms usually produce different results
  - Different runs of the same algorithm may produce different results (e.g., stochastic algorithms)



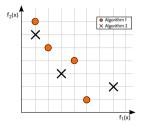


- Different optimisation algorithms usually produce different results
  - Different runs of the same algorithm may produce different results (e.g., stochastic algorithms)
- The solutions produced in one optimisation run may be incomparable to those produced in another run



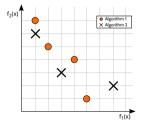


- Different optimisation algorithms usually produce different results
  - Different runs of the same algorithm may produce different results (e.g., stochastic algorithms)
- The solutions produced in one optimisation run may be incomparable to those produced in another run
- Two types of methods to assess the performance of multiobjective optimisation algorithms



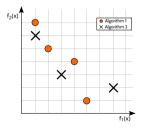


- Different optimisation algorithms usually produce different results
  - Different runs of the same algorithm may produce different results (e.g., stochastic algorithms)
- The solutions produced in one optimisation run may be incomparable to those produced in another run
- Two types of methods to assess the performance of multiobjective optimisation algorithms
  - (Set-)Quality Indicators (e.g., the Hypervolume Indicator)





- Different optimisation algorithms usually produce different results
  - Different runs of the same algorithm may produce different results (e.g., stochastic algorithms)
- The solutions produced in one optimisation run may be incomparable to those produced in another run
- Two types of methods to assess the performance of multiobjective optimisation algorithms
  - (Set-)Quality Indicators (e.g., the Hypervolume Indicator)
  - Empirical Attainment Function





 $\bullet$  A (set-)quality indicator  ${\cal I}$  is a function that maps a set of points in the objective space to a real value

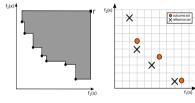


- ullet A (set-)quality indicator  ${\cal I}$  is a function that maps a set of points in the objective space to a real value
- Examples:
  - The hypervolume indicator





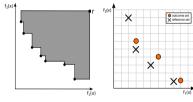
- ullet A (set-)quality indicator  ${\cal I}$  is a function that maps a set of points in the objective space to a real value
- Examples:
  - The hypervolume indicator
  - (additive)  $\varepsilon$ -indicator





ullet A (set-)quality indicator  ${\cal I}$  is a function that maps a set of points in the objective space to a real value

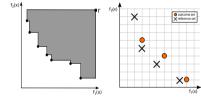
- Examples:
  - The hypervolume indicator
  - (additive)  $\varepsilon$ -indicator
- Performance assessment





ullet A (set-)quality indicator  ${\cal I}$  is a function that maps a set of points in the objective space to a real value

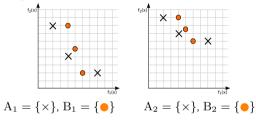
- Examples:
  - The hypervolume indicator
  - (additive)  $\varepsilon$ -indicator



- Performance assessment
- Guide the search process (subset selection view)
  - ullet Find a subset of k solutions that maximizes a given quality indicator

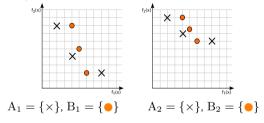


Scaling invariance/independence





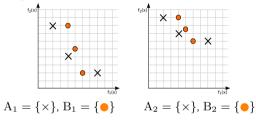
Scaling invariance/independence



Scaling invariance:  $\mathcal{I}(A_1) = \mathcal{I}(A_2)$  and  $\mathcal{I}(B_1) = \mathcal{I}(B_2)$ 



#### Scaling invariance/independence



Scaling invariance:  $\mathcal{I}(A_1) = \mathcal{I}(A_2)$  and  $\mathcal{I}(B_1) = \mathcal{I}(B_2)$ 

Scaling independence:  $\mathcal{I}(A_1) \geq \mathcal{I}(B_1) \Rightarrow \mathcal{I}(A_2) \geq \mathcal{I}(B_2)$ 



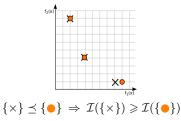
- Monotonicity
  - ullet Given a set-dominance relation  ${\mathcal R}$  (e.g.: weak dominance,  $\preceq$ )



- Monotonicity
  - ullet Given a set-dominance relation  ${\mathcal R}$  (e.g.: weak dominance,  $\preceq$ )
  - A set-indicator  $\mathcal{I}$  is weakly  $\mathcal{R}$ -monotonic if, given two point sets  $A, B \subset \mathbb{R}^d$ ,  $A \mathcal{R} B$  implies  $\mathcal{I}(A) \geq \mathcal{I}(B)$ .



- Monotonicity
  - ullet Given a set-dominance relation  ${\mathcal R}$  (e.g.: weak dominance,  $\preceq$ )
  - A set-indicator  $\mathcal{I}$  is weakly  $\mathcal{R}$ -monotonic if, given two point sets  $A, B \subset \mathbb{R}^d$ ,  $A \mathcal{R} B$  implies  $\mathcal{I}(A) \geq \mathcal{I}(B)$ .
    - ullet  $\mathcal I$  is weakly  $\preceq$ -monotonic

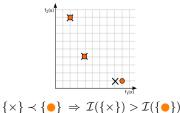




- Monotonicity
  - Given a set-dominance relation  $\mathcal{R}$  (e.g.: weak dominance,  $\preceq$ )
  - A set-indicator  $\mathcal{I}$  is weakly  $\mathcal{R}$ -monotonic if, given two point sets  $A, B \subset \mathbb{R}^d$ ,  $A \mathcal{R} B$  implies  $\mathcal{I}(A) \geq \mathcal{I}(B)$ .
    - $\mathcal{I}$  is weakly  $\preceq$ -monotonic
  - If A  ${\cal R}$  B implies  ${\cal I}(A)>{\cal I}(B),$  the indicator is strictly  ${\cal R}\text{-monotonic}$



- Monotonicity
  - Given a set-dominance relation  $\mathcal{R}$  (e.g.: weak dominance,  $\preceq$ )
  - A set-indicator  $\mathcal{I}$  is weakly  $\mathcal{R}$ -monotonic if, given two point sets  $A, B \subset \mathbb{R}^d$ ,  $A \mathcal{R} B$  implies  $\mathcal{I}(A) \geq \mathcal{I}(B)$ .
    - $\mathcal{I}$  is weakly  $\leq$ -monotonic
  - If A  $\mathcal{R}$  B implies  $\mathcal{I}(A) > \mathcal{I}(B)$ , the indicator is strictly  $\mathcal{R}$ -monotonic
    - ullet  $\mathcal I$  is strictly  $\prec$ -monotonic





- Monotonicity
  - Given a set-dominance relation  $\mathcal{R}$  (e.g.: weak dominance,  $\preceq$ )
  - A set-indicator  $\mathcal{I}$  is weakly  $\mathcal{R}$ -monotonic if, given two point sets  $A, B \subset \mathbb{R}^d$ ,  $A \mathcal{R} B$  implies  $\mathcal{I}(A) \geq \mathcal{I}(B)$ .
    - • I is weakly ≤-monotonic
  - If A  $\mathcal R$  B implies  $\mathcal I(A)>\mathcal I(B)$ , the indicator is strictly  $\mathcal R$ -monotonic
    - $\mathcal{I}$  is strictly  $\prec$ -monotonic
    - ullet  $\mathcal I$  is strictly  $\prec \cdot$ -monotonic

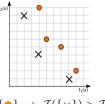


$$\{\times\} \prec \{\bullet\} \Rightarrow \mathcal{I}(\{\times\}) > \mathcal{I}(\{\bullet\})$$



- Monotonicity
  - Given a set-dominance relation  $\mathcal{R}$  (e.g.: weak dominance,  $\preceq$ )
  - A set-indicator  $\mathcal{I}$  is weakly  $\mathcal{R}$ -monotonic if, given two point sets  $A, B \subset \mathbb{R}^d$ ,  $A \mathcal{R} B$  implies  $\mathcal{I}(A) \geq \mathcal{I}(B)$ .
    - • I is weakly ≤-monotonic
  - If A  $\mathcal R$  B implies  $\mathcal I(A)>\mathcal I(B)$ , the indicator is strictly  $\mathcal R$ -monotonic
    - $\mathcal{I}$  is strictly  $\prec$ -monotonic

    - $\mathcal{I}$  is strictly  $\prec\!\!\prec$ -monotonic





- Monotonicity
  - Given a set-dominance relation  $\mathcal{R}$  (e.g.: weak dominance,  $\preceq$ )
  - A set-indicator  $\mathcal{I}$  is weakly  $\mathcal{R}$ -monotonic if, given two point sets  $A, B \subset \mathbb{R}^d$ ,  $A \mathcal{R} B$  implies  $\mathcal{I}(A) \geq \mathcal{I}(B)$ .
    - • I is weakly ≤-monotonic
  - If A  $\mathcal{R}$  B implies  $\mathcal{I}(A) > \mathcal{I}(B)$ , the indicator is strictly  $\mathcal{R}$ -monotonic
    - $\mathcal{I}$  is strictly  $\prec$ -monotonic
    - • I is strictly ≺·-monotonic
    - $\mathcal{I}$  is strictly  $\prec\!\!\prec$ -monotonic
  - Allow to infer a lower bound on the number of Pareto-optimal solution in any subset maximizing the indicator  ${\cal I}$



- Monotonicity
  - Given a set-dominance relation  $\mathcal{R}$  (e.g.: weak dominance,  $\leq$ )
  - A set-indicator  $\mathcal{I}$  is weakly  $\mathcal{R}$ -monotonic if, given two point sets  $A, B \subset \mathbb{R}^d$ ,  $A \mathcal{R} B$  implies  $\mathcal{I}(A) \geq \mathcal{I}(B)$ .
    - $\mathcal{I}$  is weakly  $\leq$ -monotonic  $\Rightarrow \exists_{S \in \mathcal{A}} |S \cap P| = \min(k, |P|)$
  - If A  $\mathcal{R}$  B implies  $\mathcal{I}(A) > \mathcal{I}(B)$ , the indicator is strictly  $\mathcal{R}$ -monotonic
    - $\mathcal{I}$  is strictly  $\prec$ -monotonic
    - • I is strictly ≺·-monotonic
    - $\mathcal{I}$  is strictly  $\prec\!\!\prec$ -monotonic
  - Allow to infer a lower bound on the number of Pareto-optimal solution in any subset maximizing the indicator  ${\cal I}$



- Monotonicity
  - Given a set-dominance relation  $\mathcal{R}$  (e.g.: weak dominance,  $\preceq$ )
  - A set-indicator  $\mathcal{I}$  is weakly  $\mathcal{R}$ -monotonic if, given two point sets  $A, B \subset \mathbb{R}^d$ ,  $A \mathcal{R} B$  implies  $\mathcal{I}(A) \geq \mathcal{I}(B)$ .
    - $\mathcal{I}$  is weakly  $\leq$ -monotonic  $\Rightarrow \exists_{S \in \mathcal{A}} |S \cap P| = \min(k, |P|)$
  - If A  $\mathcal{R}$  B implies  $\mathcal{I}(A) > \mathcal{I}(B)$ , the indicator is strictly  $\mathcal{R}$ -monotonic
    - $\mathcal{I}$  is strictly  $\prec$ -monotonic  $\Rightarrow \forall_{S \in \mathcal{A}} |S \cap P| = \min(k, |P|)$
    - • I is strictly ≺·-monotonic
    - $\mathcal{I}$  is strictly  $\prec\!\!\prec$ -monotonic
  - Allow to infer a lower bound on the number of Pareto-optimal solution in any subset maximizing the indicator  ${\cal I}$



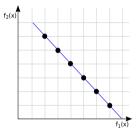
- Monotonicity
  - Given a set-dominance relation  $\mathcal{R}$  (e.g.: weak dominance,  $\preceq$ )
  - A set-indicator  $\mathcal{I}$  is weakly  $\mathcal{R}$ -monotonic if, given two point sets  $A, B \subset \mathbb{R}^d$ ,  $A \mathcal{R} B$  implies  $\mathcal{I}(A) \geq \mathcal{I}(B)$ .
    - $\mathcal{I}$  is weakly  $\leq$ -monotonic  $\Rightarrow \exists_{S \in \mathcal{A}} |S \cap P| = \min(k, |P|)$
  - If A  $\mathcal{R}$  B implies  $\mathcal{I}(A) > \mathcal{I}(B)$ , the indicator is strictly  $\mathcal{R}$ -monotonic
    - $\mathcal{I}$  is strictly  $\prec$ -monotonic  $\Rightarrow \forall_{S \in \mathcal{A}} |S \cap P| = \min(k, |P|)$
    - $\mathcal{I}$  is strictly  $\prec$ -monotonic  $\Rightarrow \forall_{S \in \mathcal{A}} |S \cap P| \geqslant 1$
    - ullet I is strictly  $\prec\!\!\prec$ -monotonic
  - Allow to infer a lower bound on the number of Pareto-optimal solution in any subset maximizing the indicator  ${\cal I}$



- Monotonicity
  - Given a set-dominance relation  $\mathcal{R}$  (e.g.: weak dominance,  $\preceq$ )
  - A set-indicator  $\mathcal{I}$  is weakly  $\mathcal{R}$ -monotonic if, given two point sets  $A, B \subset \mathbb{R}^d$ ,  $A \mathcal{R} B$  implies  $\mathcal{I}(A) \geq \mathcal{I}(B)$ .
    - $\mathcal{I}$  is weakly  $\preceq$ -monotonic  $\Rightarrow \exists_{S \in \mathcal{A}} |S \cap P| = \min(k, |P|)$
  - If A  $\mathcal{R}$  B implies  $\mathcal{I}(A) > \mathcal{I}(B)$ , the indicator is strictly  $\mathcal{R}$ -monotonic
    - $\mathcal{I}$  is strictly  $\prec$ -monotonic  $\Rightarrow \forall_{S \in \mathcal{A}} |S \cap P| = \min(k, |P|)$
    - $\mathcal{I}$  is strictly  $\prec$ -monotonic  $\Rightarrow \forall_{S \in \mathcal{A}} |S \cap P| \geqslant 1$
    - $\mathcal{I}$  is strictly  $\prec\!\!\prec$ -monotonic  $\Rightarrow \forall_{S \in \mathcal{A}} |S \cap P| \geqslant 0$
  - Allow to infer a lower bound on the number of Pareto-optimal solution in any subset maximizing the indicator  ${\cal I}$

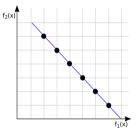


- Optimal  $\mu$ -distributions
  - $\bullet$  Characterize the indicator-optimal subsets of size up to  $\mu$



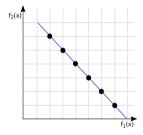


- Optimal  $\mu$ -distributions
  - $\bullet$  Characterize the indicator-optimal subsets of size up to  $\mu$
- Characteristics



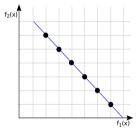


- Optimal  $\mu$ -distributions
  - $\bullet$  Characterize the indicator-optimal subsets of size up to  $\mu$
- Characteristics
  - Existence



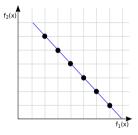


- Optimal  $\mu$ -distributions
  - $\bullet$  Characterize the indicator-optimal subsets of size up to  $\mu$
- Characteristics
  - Existence
  - Uniqueness



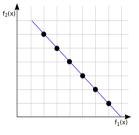


- Optimal  $\mu$ -distributions
  - $\bullet$  Characterize the indicator-optimal subsets of size up to  $\mu$
- Characteristics
  - Existence
  - Uniqueness
  - Connection to the Pareto front



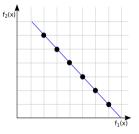


- Optimal  $\mu$ -distributions
  - $\bullet$  Characterize the indicator-optimal subsets of size up to  $\mu$
- Characteristics
  - Existence
  - Uniqueness
  - Connection to the Pareto front
  - ullet Monotonicity with respect to  $\mu$



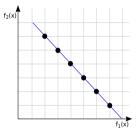


- Optimal  $\mu$ -distributions
  - $\bullet$  Characterize the indicator-optimal subsets of size up to  $\mu$
- Characteristics
  - Existence
  - Uniqueness
  - Connection to the Pareto front
  - ullet Monotonicity with respect to  $\mu$
  - Influence of parameters





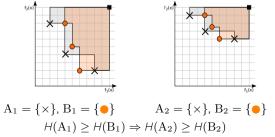
- Optimal  $\mu$ -distributions
  - $\bullet$  Characterize the indicator-optimal subsets of size up to  $\mu$
- Characteristics
  - Existence
  - Uniqueness
  - Connection to the Pareto front
  - ullet Monotonicity with respect to  $\mu$
  - Influence of parameters
  - Distribution



### **Properties of the Hypervolume Indicator**



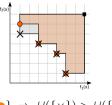
- Scaling independent
  - The order defined by the hypervolume indicator is preserved under linear scaling transformations of the objective space



### **Properties of the Hypervolume Indicator**



- Scaling independent
  - The order defined by the hypervolume indicator is preserved under linear scaling transformations of the objective space
- Strictly monotonic with respect to (strict) set-dominance (≺)
  - Given two point sets  $A, B \subset \mathbb{R}^d$ , if  $A \prec B$  then  $\mathcal{I}(A) > \mathcal{I}(B)$
  - All solutions in an optimal subset are Pareto-optimal solutions



$$\{\times\} \prec \{\bullet\} \Rightarrow H(\{\times\}) > H(\{\bullet\})$$

### **Properties of the Hypervolume Indicator**



- Scaling independent
  - The order defined by the hypervolume indicator is preserved under linear scaling transformations of the objective space
- ullet Strictly monotonic with respect to (strict) set-dominance ( $\prec$ )
  - Given two point sets  $A, B \subset \mathbb{R}^d$ , if  $A \prec B$  then  $\mathcal{I}(A) > \mathcal{I}(B)$
  - All solutions in an optimal subset are Pareto-optimal solutions
- Optimal  $\mu$ -distributions
  - Ex.: The points in an optimal subset of a two-dimensional continuous linear Pareto front are evenly spaced



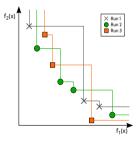


- Allows the distribution of the outcomes of different runs of an optimisation algorithm to be studied in terms of location
- Example with 3 runs



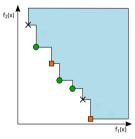
- Allows the distribution of the outcomes of different runs of an optimisation algorithm to be studied in terms of location
- Example with 3 runs

•



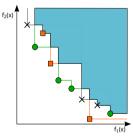


- Allows the distribution of the outcomes of different runs of an optimisation algorithm to be studied in terms of location
- Example with 3 runs
  - Region of the space attained by at least  $\frac{1}{3}$  of the runs



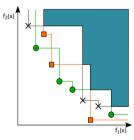


- Allows the distribution of the outcomes of different runs of an optimisation algorithm to be studied in terms of location
- Example with 3 runs
  - Region of the space attained by at least  $\frac{2}{3}$  of the runs



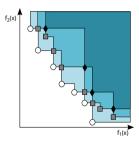


- Allows the distribution of the outcomes of different runs of an optimisation algorithm to be studied in terms of location
- Example with 3 runs
  - Region of the space attained by at least  $\frac{3}{3}$  of the runs





- Allows the distribution of the outcomes of different runs of an optimisation algorithm to be studied in terms of location
- Example with 3 runs
  - All attainment regions



### API extension to Multiobjetive Optimisation



Only affects solution evaluation:

```
objective_value(Solution) : double[0..1]
objective_value_increment(Move, Solution) : double[0..1]
```

Considers new abstract types Value and Increment:

```
objective_value(Solution) : Value[0..1]
objective_value_increment(Move, Solution) : Increment[0..1]
```

### **API extension to Multiobjetive Optimisation**



New type: PreferenceModel Scalarisations:

```
scalarisation(PreferenceModel, Value): real
```

#### Preference relations:

### API extension to Multiobjetive Optimisation



### Other non-scalarising approaches

```
selection(PreferenceModel, Value[0..*], n=None) : int[0..*]
ranking(PreferenceModel, Value[0..*]) : int[0..*]
```



• Solving multiobjective optimisation problem poses challenges



- Solving multiobjective optimisation problem poses challenges
  - Size of the Pareto front



- Solving multiobjective optimisation problem poses challenges
  - Size of the Pareto front
  - Unknown preferences



- Solving multiobjective optimisation problem poses challenges
  - Size of the Pareto front
  - Unknown preferences
  - Preference modelling



- Solving multiobjective optimisation problem poses challenges
  - Size of the Pareto front
  - Unknown preferences
  - Preference modelling
- It is important to understand



- Solving multiobjective optimisation problem poses challenges
  - Size of the Pareto front
  - Unknown preferences
  - Preference modelling
- It is important to understand
  - The implication of each algorithmic approach



- Solving multiobjective optimisation problem poses challenges
  - Size of the Pareto front
  - Unknown preferences
  - Preference modelling
- It is important to understand
  - The implication of each algorithmic approach
    - Biases towards (sets of) solutions



- Solving multiobjective optimisation problem poses challenges
  - Size of the Pareto front
  - Unknown preferences
  - Preference modelling
- It is important to understand
  - The implication of each algorithmic approach
    - Biases towards (sets of) solutions
    - Guarantees regarding the quality of the outcome set



- Solving multiobjective optimisation problem poses challenges
  - Size of the Pareto front
  - Unknown preferences
  - Preference modelling
- It is important to understand
  - The implication of each algorithmic approach
    - Biases towards (sets of) solutions
    - Guarantees regarding the quality of the outcome set
  - The theoretical properties of quality indicators and their implications



- Solving multiobjective optimisation problem poses challenges
  - Size of the Pareto front
  - Unknown preferences
  - Preference modelling
- It is important to understand
  - The implication of each algorithmic approach
    - Biases towards (sets of) solutions
    - Guarantees regarding the quality of the outcome set
  - The theoretical properties of quality indicators and their implications
- Leads to better usage of optimisation algorithms and performance assessment tools



- Solving multiobjective optimisation problem poses challenges
  - Size of the Pareto front
  - Unknown preferences
  - Preference modelling
- It is important to understand
  - The implication of each algorithmic approach
    - Biases towards (sets of) solutions
    - Guarantees regarding the quality of the outcome set
  - The theoretical properties of quality indicators and their implications
- Leads to better usage of optimisation algorithms and performance assessment tools
- The API allows to incorporate different models of preferences



# Thanks!

### Acknowledgments



This presentation is based upon work from COST Action Randomised Optimisation Algorithms Research Network (ROARNET), CA22137, supported by COST (European Cooperation in Science and Technology).

This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project: 2022.08367.CEECIND/CP1717/CT0001





