
1

COST Action CA22137 2023-2027

Multiobjective
Optimisation

1st ROAR-NET Training School

Andreia P. Guerreiro
INESC-ID, Portugal

1

Outline

• Multiobjective Optimization

• Preference Articulation

• Solving Multiobjective Optimisation Problems

• Performance Assessment

• API extension to Multiobjective Optimisation

• Concluding Remarks

1

Examples

• Book an hotel room
• Cheapest, most comfortable, closest to the city center

• Transport for travelling from home to work
• Cheapest, fastest

Taxi

Uber

TVDE

Bolt

co
st

time

1

Examples

• Book an hotel room
• Cheapest, most comfortable, closest to the city center

• Transport for travelling from home to work
• Cheapest, fastest

Taxi

Uber

TVDE

Bolt

co
st

time

1

Examples

• Book an hotel room
• Cheapest, most comfortable, closest to the city center

• Transport for travelling from home to work
• Cheapest, fastest

Taxi

Uber

TVDE

Bolt

co
st

time

2

Multiobjective Optimisation

• Considering minimisation:

min
x∈Ω

f(x) = (f1(x), f2(x), . . . , fd(x))

Pareto-optimal set Pareto-optimal front

(Efficient set) (the nondominated set)

Taxi

Uber

TVDE

Bolt

Ω
f2(x)

f1(x)

Rd

Decision Space Objective Space

2

Multiobjective Optimisation

• Considering minimisation:

min
x∈Ω

f(x) = (f1(x), f2(x), . . . , fd(x))

Pareto-optimal set Pareto-optimal front

(Efficient set) (the nondominated set)

Taxi

Uber

TVDE

Bolt

Ω
f2(x)

f1(x)

Rd

Decision Space Objective Space

2

Multiobjective Optimisation

• Considering minimisation:

min
x∈Ω

f(x) = (f1(x), f2(x), . . . , fd(x))

Pareto-optimal set Pareto-optimal front

(Efficient set) (the nondominated set)

Taxi

Uber

TVDE

Bolt

Ω
f2(x)

f1(x)

Rd

Decision Space Objective Space

3

Dominance Relations

Given u, v ∈ Rd :

• u weakly dominates v (u ≤ v)
• If ui ≤ vi for all 1 ≤ i ≤ d

• u (strictly) dominates v (u < v)
• If u ≤ v and v � u

• u stongly dominates v (u � v)
• If ui < vi for all 1 ≤ i ≤ d

Given A ⊂ Rd and u ∈ A:

• u is a nondominated point
• If there is no v ∈ A such that v < u

f2(x)

f1(x)

3

Dominance Relations

Given u, v ∈ Rd :

• u weakly dominates v (u ≤ v)
• If ui ≤ vi for all 1 ≤ i ≤ d

• u (strictly) dominates v (u < v)
• If u ≤ v and v � u

• u stongly dominates v (u � v)
• If ui < vi for all 1 ≤ i ≤ d

Given A ⊂ Rd and u ∈ A:

• u is a nondominated point
• If there is no v ∈ A such that v < u

f2(x)

f1(x)

≤

3

Dominance Relations

Given u, v ∈ Rd :

• u weakly dominates v (u ≤ v)
• If ui ≤ vi for all 1 ≤ i ≤ d

• u (strictly) dominates v (u < v)
• If u ≤ v and v � u

• u stongly dominates v (u � v)
• If ui < vi for all 1 ≤ i ≤ d

Given A ⊂ Rd and u ∈ A:

• u is a nondominated point
• If there is no v ∈ A such that v < u

f2(x)

f1(x)

<

3

Dominance Relations

Given u, v ∈ Rd :

• u weakly dominates v (u ≤ v)
• If ui ≤ vi for all 1 ≤ i ≤ d

• u (strictly) dominates v (u < v)
• If u ≤ v and v � u

• u stongly dominates v (u � v)
• If ui < vi for all 1 ≤ i ≤ d

Given A ⊂ Rd and u ∈ A:

• u is a nondominated point
• If there is no v ∈ A such that v < u

f2(x)

f1(x)

�

3

Dominance Relations

Given u, v ∈ Rd :

• u weakly dominates v (u ≤ v)
• If ui ≤ vi for all 1 ≤ i ≤ d

• u (strictly) dominates v (u < v)
• If u ≤ v and v � u

• u stongly dominates v (u � v)
• If ui < vi for all 1 ≤ i ≤ d

Given A ⊂ Rd and u ∈ A:

• u is a nondominated point
• If there is no v ∈ A such that v < u

f2(x)

f1(x)

nondominated

4

Set-Dominance Relations

Given A,B ⊂ Rd :

• A weakly dominates B (A � B)
• If ∀b∈B∃a∈A : a ≤ b

• A (strictly) dominates B (A ≺ B)
• If A � B and B 6� A

• A (strictly) dominates B elementwise (A ≺· B)
• If ∀b∈B∃a∈A : a < b

• A strongly dominates B (A ≺≺ B)
• If ∀b∈B∃a∈A : a � b

f2(x)

f1(x)

4

Set-Dominance Relations

Given A,B ⊂ Rd :

• A weakly dominates B (A � B)
• If ∀b∈B∃a∈A : a ≤ b

• A (strictly) dominates B (A ≺ B)
• If A � B and B 6� A

• A (strictly) dominates B elementwise (A ≺· B)
• If ∀b∈B∃a∈A : a < b

• A strongly dominates B (A ≺≺ B)
• If ∀b∈B∃a∈A : a � b

f2(x)

f1(x)

{ } � { }

4

Set-Dominance Relations

Given A,B ⊂ Rd :

• A weakly dominates B (A � B)
• If ∀b∈B∃a∈A : a ≤ b

• A (strictly) dominates B (A ≺ B)
• If A � B and B 6� A

• A (strictly) dominates B elementwise (A ≺· B)
• If ∀b∈B∃a∈A : a < b

• A strongly dominates B (A ≺≺ B)
• If ∀b∈B∃a∈A : a � b

f2(x)

f1(x)

{ } ≺ { }

4

Set-Dominance Relations

Given A,B ⊂ Rd :

• A weakly dominates B (A � B)
• If ∀b∈B∃a∈A : a ≤ b

• A (strictly) dominates B (A ≺ B)
• If A � B and B 6� A

• A (strictly) dominates B elementwise (A ≺· B)
• If ∀b∈B∃a∈A : a < b

• A strongly dominates B (A ≺≺ B)
• If ∀b∈B∃a∈A : a � b

f2(x)

f1(x)

{ } ≺· { }

4

Set-Dominance Relations

Given A,B ⊂ Rd :

• A weakly dominates B (A � B)
• If ∀b∈B∃a∈A : a ≤ b

• A (strictly) dominates B (A ≺ B)
• If A � B and B 6� A

• A (strictly) dominates B elementwise (A ≺· B)
• If ∀b∈B∃a∈A : a < b

• A strongly dominates B (A ≺≺ B)
• If ∀b∈B∃a∈A : a � b

f2(x)

f1(x)

{ } ≺≺ { }

5

Decision Making

• Conflicting objectives
• Pareto-optimal front

• Usually not known
• Possible infinite

• The best solution depends on the Decision Maker (DM) preferences
• Subjective information

f2(x)

f1(x)

5

Decision Making

• Conflicting objectives
• Pareto-optimal front

• Usually not known
• Possible infinite

• The best solution depends on the Decision Maker (DM) preferences
• Subjective information

f2(x)

f1(x)

5

Preference Information

• Helps discriminate between incomparable solutions

• May be provided at different stages of the optimisation process

• Optimisation methods are classified according to when it is articulated

1. No-preference methods

• DM has no expectations
• Return a (any) Pareto-optimal solution

2. A posteriori methods

• Return the full or an approximation of the Pareto front
• DM then selects the most preferable solution

3. Interactive/progressive methods

• DM periodically expresses preferences during the optimisation process
• the search progresses towards the most preferable solution

4. A priori methods

• DM provides preference information pior to the optimisation
• Focus on solutions on the preferable regions

5

Preference Information

• Helps discriminate between incomparable solutions

• May be provided at different stages of the optimisation process

• Optimisation methods are classified according to when it is articulated

1. No-preference methods

• DM has no expectations
• Return a (any) Pareto-optimal solution

2. A posteriori methods

• Return the full or an approximation of the Pareto front
• DM then selects the most preferable solution

3. Interactive/progressive methods

• DM periodically expresses preferences during the optimisation process
• the search progresses towards the most preferable solution

4. A priori methods

• DM provides preference information pior to the optimisation
• Focus on solutions on the preferable regions

5

Preference Information

• Helps discriminate between incomparable solutions

• May be provided at different stages of the optimisation process

• Optimisation methods are classified according to when it is articulated

1. No-preference methods

• DM has no expectations
• Return a (any) Pareto-optimal solution

2. A posteriori methods

• Return the full or an approximation of the Pareto front
• DM then selects the most preferable solution

3. Interactive/progressive methods

• DM periodically expresses preferences during the optimisation process
• the search progresses towards the most preferable solution

4. A priori methods

• DM provides preference information pior to the optimisation
• Focus on solutions on the preferable regions

5

Preference Information

• Helps discriminate between incomparable solutions

• May be provided at different stages of the optimisation process

• Optimisation methods are classified according to when it is articulated

1. No-preference methods

• DM has no expectations
• Return a (any) Pareto-optimal solution

2. A posteriori methods

• Return the full or an approximation of the Pareto front
• DM then selects the most preferable solution

3. Interactive/progressive methods

• DM periodically expresses preferences during the optimisation process
• the search progresses towards the most preferable solution

4. A priori methods

• DM provides preference information pior to the optimisation
• Focus on solutions on the preferable regions

5

Preference Information

• Helps discriminate between incomparable solutions

• May be provided at different stages of the optimisation process

• Optimisation methods are classified according to when it is articulated

1. No-preference methods
• DM has no expectations

• Return a (any) Pareto-optimal solution

2. A posteriori methods

• Return the full or an approximation of the Pareto front
• DM then selects the most preferable solution

3. Interactive/progressive methods

• DM periodically expresses preferences during the optimisation process
• the search progresses towards the most preferable solution

4. A priori methods

• DM provides preference information pior to the optimisation
• Focus on solutions on the preferable regions

5

Preference Information

• Helps discriminate between incomparable solutions

• May be provided at different stages of the optimisation process

• Optimisation methods are classified according to when it is articulated

1. No-preference methods
• DM has no expectations
• Return a (any) Pareto-optimal solution

2. A posteriori methods

• Return the full or an approximation of the Pareto front
• DM then selects the most preferable solution

3. Interactive/progressive methods

• DM periodically expresses preferences during the optimisation process
• the search progresses towards the most preferable solution

4. A priori methods

• DM provides preference information pior to the optimisation
• Focus on solutions on the preferable regions

5

Preference Information

• Helps discriminate between incomparable solutions

• May be provided at different stages of the optimisation process

• Optimisation methods are classified according to when it is articulated

1. No-preference methods
• DM has no expectations
• Return a (any) Pareto-optimal solution

2. A posteriori methods

• Return the full or an approximation of the Pareto front
• DM then selects the most preferable solution

3. Interactive/progressive methods

• DM periodically expresses preferences during the optimisation process
• the search progresses towards the most preferable solution

4. A priori methods

• DM provides preference information pior to the optimisation
• Focus on solutions on the preferable regions

5

Preference Information

• Helps discriminate between incomparable solutions

• May be provided at different stages of the optimisation process

• Optimisation methods are classified according to when it is articulated

1. No-preference methods
• DM has no expectations
• Return a (any) Pareto-optimal solution

2. A posteriori methods
• Return the full or an approximation of the Pareto front

• DM then selects the most preferable solution

3. Interactive/progressive methods

• DM periodically expresses preferences during the optimisation process
• the search progresses towards the most preferable solution

4. A priori methods

• DM provides preference information pior to the optimisation
• Focus on solutions on the preferable regions

5

Preference Information

• Helps discriminate between incomparable solutions

• May be provided at different stages of the optimisation process

• Optimisation methods are classified according to when it is articulated

1. No-preference methods
• DM has no expectations
• Return a (any) Pareto-optimal solution

2. A posteriori methods
• Return the full or an approximation of the Pareto front
• DM then selects the most preferable solution

3. Interactive/progressive methods

• DM periodically expresses preferences during the optimisation process
• the search progresses towards the most preferable solution

4. A priori methods

• DM provides preference information pior to the optimisation
• Focus on solutions on the preferable regions

5

Preference Information

• Helps discriminate between incomparable solutions

• May be provided at different stages of the optimisation process

• Optimisation methods are classified according to when it is articulated

1. No-preference methods
• DM has no expectations
• Return a (any) Pareto-optimal solution

2. A posteriori methods
• Return the full or an approximation of the Pareto front
• DM then selects the most preferable solution

3. Interactive/progressive methods

• DM periodically expresses preferences during the optimisation process
• the search progresses towards the most preferable solution

4. A priori methods

• DM provides preference information pior to the optimisation
• Focus on solutions on the preferable regions

5

Preference Information

• Helps discriminate between incomparable solutions

• May be provided at different stages of the optimisation process

• Optimisation methods are classified according to when it is articulated

1. No-preference methods
• DM has no expectations
• Return a (any) Pareto-optimal solution

2. A posteriori methods
• Return the full or an approximation of the Pareto front
• DM then selects the most preferable solution

3. Interactive/progressive methods
• DM periodically expresses preferences during the optimisation process

• the search progresses towards the most preferable solution

4. A priori methods

• DM provides preference information pior to the optimisation
• Focus on solutions on the preferable regions

5

Preference Information

• Helps discriminate between incomparable solutions

• May be provided at different stages of the optimisation process

• Optimisation methods are classified according to when it is articulated

1. No-preference methods
• DM has no expectations
• Return a (any) Pareto-optimal solution

2. A posteriori methods
• Return the full or an approximation of the Pareto front
• DM then selects the most preferable solution

3. Interactive/progressive methods
• DM periodically expresses preferences during the optimisation process
• the search progresses towards the most preferable solution

4. A priori methods

• DM provides preference information pior to the optimisation
• Focus on solutions on the preferable regions

5

Preference Information

• Helps discriminate between incomparable solutions

• May be provided at different stages of the optimisation process

• Optimisation methods are classified according to when it is articulated

1. No-preference methods
• DM has no expectations
• Return a (any) Pareto-optimal solution

2. A posteriori methods
• Return the full or an approximation of the Pareto front
• DM then selects the most preferable solution

3. Interactive/progressive methods
• DM periodically expresses preferences during the optimisation process
• the search progresses towards the most preferable solution

4. A priori methods

• DM provides preference information pior to the optimisation
• Focus on solutions on the preferable regions

5

Preference Information

• Helps discriminate between incomparable solutions

• May be provided at different stages of the optimisation process

• Optimisation methods are classified according to when it is articulated

1. No-preference methods
• DM has no expectations
• Return a (any) Pareto-optimal solution

2. A posteriori methods
• Return the full or an approximation of the Pareto front
• DM then selects the most preferable solution

3. Interactive/progressive methods
• DM periodically expresses preferences during the optimisation process
• the search progresses towards the most preferable solution

4. A priori methods
• DM provides preference information pior to the optimisation

• Focus on solutions on the preferable regions

5

Preference Information

• Helps discriminate between incomparable solutions

• May be provided at different stages of the optimisation process

• Optimisation methods are classified according to when it is articulated

1. No-preference methods
• DM has no expectations
• Return a (any) Pareto-optimal solution

2. A posteriori methods
• Return the full or an approximation of the Pareto front
• DM then selects the most preferable solution

3. Interactive/progressive methods
• DM periodically expresses preferences during the optimisation process
• the search progresses towards the most preferable solution

4. A priori methods
• DM provides preference information pior to the optimisation
• Focus on solutions on the preferable regions

6

Preference Articulation as a Process

• The optimisation process does not have to be static

• Preference articulation can be viewed as a process

DM OAa priori
knowledge

objective values

preference information

(aquired knowledge)

results

7

Preference Modelling

Useful for

• Favouring one of two incomparable solutions

• Handling constraints

Methods
• Utility/scalarisation functions

• Function that maps each solution to a value
• Examples

• Weight-based (such as weighted sum)
• reference-point based

• Binary relation

• Pairwise comparison between solution
• Some solutions may remain incomparable
• Should respect Pareto dominance
• Examples

• lexicographic order
• preferability relation

7

Preference Modelling

Useful for

• Favouring one of two incomparable solutions

• Handling constraints

Methods
• Utility/scalarisation functions

• Function that maps each solution to a value

• Examples

• Weight-based (such as weighted sum)
• reference-point based

• Binary relation

• Pairwise comparison between solution
• Some solutions may remain incomparable
• Should respect Pareto dominance
• Examples

• lexicographic order
• preferability relation

7

Preference Modelling

Useful for

• Favouring one of two incomparable solutions

• Handling constraints

Methods
• Utility/scalarisation functions

• Function that maps each solution to a value
• Examples

• Weight-based (such as weighted sum)
• reference-point based

• Binary relation

• Pairwise comparison between solution
• Some solutions may remain incomparable
• Should respect Pareto dominance
• Examples

• lexicographic order
• preferability relation

7

Preference Modelling

Useful for

• Favouring one of two incomparable solutions

• Handling constraints

Methods
• Utility/scalarisation functions

• Function that maps each solution to a value
• Examples

• Weight-based (such as weighted sum)

• reference-point based

• Binary relation

• Pairwise comparison between solution
• Some solutions may remain incomparable
• Should respect Pareto dominance
• Examples

• lexicographic order
• preferability relation

7

Preference Modelling

Useful for

• Favouring one of two incomparable solutions

• Handling constraints

Methods
• Utility/scalarisation functions

• Function that maps each solution to a value
• Examples

• Weight-based (such as weighted sum)
• reference-point based

• Binary relation

• Pairwise comparison between solution
• Some solutions may remain incomparable
• Should respect Pareto dominance
• Examples

• lexicographic order
• preferability relation

7

Preference Modelling

Useful for

• Favouring one of two incomparable solutions

• Handling constraints

Methods
• Utility/scalarisation functions

• Function that maps each solution to a value
• Examples

• Weight-based (such as weighted sum)
• reference-point based

• Binary relation

• Pairwise comparison between solution
• Some solutions may remain incomparable
• Should respect Pareto dominance
• Examples

• lexicographic order
• preferability relation

7

Preference Modelling

Useful for

• Favouring one of two incomparable solutions

• Handling constraints

Methods
• Utility/scalarisation functions

• Function that maps each solution to a value
• Examples

• Weight-based (such as weighted sum)
• reference-point based

• Binary relation
• Pairwise comparison between solution

• Some solutions may remain incomparable
• Should respect Pareto dominance
• Examples

• lexicographic order
• preferability relation

7

Preference Modelling

Useful for

• Favouring one of two incomparable solutions

• Handling constraints

Methods
• Utility/scalarisation functions

• Function that maps each solution to a value
• Examples

• Weight-based (such as weighted sum)
• reference-point based

• Binary relation
• Pairwise comparison between solution
• Some solutions may remain incomparable

• Should respect Pareto dominance
• Examples

• lexicographic order
• preferability relation

7

Preference Modelling

Useful for

• Favouring one of two incomparable solutions

• Handling constraints

Methods
• Utility/scalarisation functions

• Function that maps each solution to a value
• Examples

• Weight-based (such as weighted sum)
• reference-point based

• Binary relation
• Pairwise comparison between solution
• Some solutions may remain incomparable
• Should respect Pareto dominance

• Examples

• lexicographic order
• preferability relation

7

Preference Modelling

Useful for

• Favouring one of two incomparable solutions

• Handling constraints

Methods
• Utility/scalarisation functions

• Function that maps each solution to a value
• Examples

• Weight-based (such as weighted sum)
• reference-point based

• Binary relation
• Pairwise comparison between solution
• Some solutions may remain incomparable
• Should respect Pareto dominance
• Examples

• lexicographic order
• preferability relation

7

Preference Modelling

Useful for

• Favouring one of two incomparable solutions

• Handling constraints

Methods
• Utility/scalarisation functions

• Function that maps each solution to a value
• Examples

• Weight-based (such as weighted sum)
• reference-point based

• Binary relation
• Pairwise comparison between solution
• Some solutions may remain incomparable
• Should respect Pareto dominance
• Examples

• lexicographic order

• preferability relation

7

Preference Modelling

Useful for

• Favouring one of two incomparable solutions

• Handling constraints

Methods
• Utility/scalarisation functions

• Function that maps each solution to a value
• Examples

• Weight-based (such as weighted sum)
• reference-point based

• Binary relation
• Pairwise comparison between solution
• Some solutions may remain incomparable
• Should respect Pareto dominance
• Examples

• lexicographic order
• preferability relation

7

Approaches

• Aim of (a posteriori) multiobjective optimisation algorithms

1. Find the whole Pareto front

2. Find a ”good” subset of the Pareto front (a representation)

3. Find a ”good” approximation of the Pareto front

• Guarantees regarding the outcome set

• The quality of each solution

• is it efficient or not?

• The quality of the set of solutions

• How well does it cover the Pareto front?
• How well are the points distributed along the Pareto front?
• Does it provide an approximation guarantee?

• Provide bounds on the location of the Pareto front

7

Approaches

• Aim of (a posteriori) multiobjective optimisation algorithms

1. Find the whole Pareto front

2. Find a ”good” subset of the Pareto front (a representation)

3. Find a ”good” approximation of the Pareto front

• Guarantees regarding the outcome set

• The quality of each solution

• is it efficient or not?

• The quality of the set of solutions

• How well does it cover the Pareto front?
• How well are the points distributed along the Pareto front?
• Does it provide an approximation guarantee?

• Provide bounds on the location of the Pareto front

7

Approaches

• Aim of (a posteriori) multiobjective optimisation algorithms

1. Find the whole Pareto front

2. Find a ”good” subset of the Pareto front (a representation)

3. Find a ”good” approximation of the Pareto front

• Guarantees regarding the outcome set

• The quality of each solution

• is it efficient or not?

• The quality of the set of solutions

• How well does it cover the Pareto front?
• How well are the points distributed along the Pareto front?
• Does it provide an approximation guarantee?

• Provide bounds on the location of the Pareto front

7

Approaches

• Aim of (a posteriori) multiobjective optimisation algorithms

1. Find the whole Pareto front

2. Find a ”good” subset of the Pareto front (a representation)

3. Find a ”good” approximation of the Pareto front

• Guarantees regarding the outcome set

• The quality of each solution

• is it efficient or not?

• The quality of the set of solutions

• How well does it cover the Pareto front?
• How well are the points distributed along the Pareto front?
• Does it provide an approximation guarantee?

• Provide bounds on the location of the Pareto front

7

Approaches

• Aim of (a posteriori) multiobjective optimisation algorithms

1. Find the whole Pareto front

2. Find a ”good” subset of the Pareto front (a representation)

3. Find a ”good” approximation of the Pareto front

• Guarantees regarding the outcome set

• The quality of each solution

• is it efficient or not?

• The quality of the set of solutions

• How well does it cover the Pareto front?
• How well are the points distributed along the Pareto front?
• Does it provide an approximation guarantee?

• Provide bounds on the location of the Pareto front

7

Approaches

• Aim of (a posteriori) multiobjective optimisation algorithms

1. Find the whole Pareto front

2. Find a ”good” subset of the Pareto front (a representation)

3. Find a ”good” approximation of the Pareto front

• Guarantees regarding the outcome set
• The quality of each solution

• is it efficient or not?

• The quality of the set of solutions

• How well does it cover the Pareto front?
• How well are the points distributed along the Pareto front?
• Does it provide an approximation guarantee?

• Provide bounds on the location of the Pareto front

7

Approaches

• Aim of (a posteriori) multiobjective optimisation algorithms

1. Find the whole Pareto front

2. Find a ”good” subset of the Pareto front (a representation)

3. Find a ”good” approximation of the Pareto front

• Guarantees regarding the outcome set
• The quality of each solution

• is it efficient or not?

• The quality of the set of solutions

• How well does it cover the Pareto front?
• How well are the points distributed along the Pareto front?
• Does it provide an approximation guarantee?

• Provide bounds on the location of the Pareto front

7

Approaches

• Aim of (a posteriori) multiobjective optimisation algorithms

1. Find the whole Pareto front

2. Find a ”good” subset of the Pareto front (a representation)

3. Find a ”good” approximation of the Pareto front

• Guarantees regarding the outcome set
• The quality of each solution

• is it efficient or not?

• The quality of the set of solutions

• How well does it cover the Pareto front?
• How well are the points distributed along the Pareto front?
• Does it provide an approximation guarantee?

• Provide bounds on the location of the Pareto front

7

Approaches

• Aim of (a posteriori) multiobjective optimisation algorithms

1. Find the whole Pareto front

2. Find a ”good” subset of the Pareto front (a representation)

3. Find a ”good” approximation of the Pareto front

• Guarantees regarding the outcome set
• The quality of each solution

• is it efficient or not?

• The quality of the set of solutions
• How well does it cover the Pareto front?

• How well are the points distributed along the Pareto front?
• Does it provide an approximation guarantee?

• Provide bounds on the location of the Pareto front

7

Approaches

• Aim of (a posteriori) multiobjective optimisation algorithms

1. Find the whole Pareto front

2. Find a ”good” subset of the Pareto front (a representation)

3. Find a ”good” approximation of the Pareto front

• Guarantees regarding the outcome set
• The quality of each solution

• is it efficient or not?

• The quality of the set of solutions
• How well does it cover the Pareto front?
• How well are the points distributed along the Pareto front?

• Does it provide an approximation guarantee?

• Provide bounds on the location of the Pareto front

7

Approaches

• Aim of (a posteriori) multiobjective optimisation algorithms

1. Find the whole Pareto front

2. Find a ”good” subset of the Pareto front (a representation)

3. Find a ”good” approximation of the Pareto front

• Guarantees regarding the outcome set
• The quality of each solution

• is it efficient or not?

• The quality of the set of solutions
• How well does it cover the Pareto front?
• How well are the points distributed along the Pareto front?
• Does it provide an approximation guarantee?

• Provide bounds on the location of the Pareto front

7

Approaches

• Aim of (a posteriori) multiobjective optimisation algorithms

1. Find the whole Pareto front

2. Find a ”good” subset of the Pareto front (a representation)

3. Find a ”good” approximation of the Pareto front

• Guarantees regarding the outcome set
• The quality of each solution

• is it efficient or not?

• The quality of the set of solutions
• How well does it cover the Pareto front?
• How well are the points distributed along the Pareto front?
• Does it provide an approximation guarantee?

• Provide bounds on the location of the Pareto front

8

Methods

• Solve a sequence of single-objective problems

• e.g., Scalarisations

• Constructive search approaches

• e.g., Multiobjective branch-and-bound

• Population-based approaches

• e.g., Evolutionary multiobjective optimisation algorithms

8

Methods

• Solve a sequence of single-objective problems
• e.g., Scalarisations

• Constructive search approaches

• e.g., Multiobjective branch-and-bound

• Population-based approaches

• e.g., Evolutionary multiobjective optimisation algorithms

8

Methods

• Solve a sequence of single-objective problems
• e.g., Scalarisations

• Constructive search approaches

• e.g., Multiobjective branch-and-bound

• Population-based approaches

• e.g., Evolutionary multiobjective optimisation algorithms

8

Methods

• Solve a sequence of single-objective problems
• e.g., Scalarisations

• Constructive search approaches
• e.g., Multiobjective branch-and-bound

• Population-based approaches

• e.g., Evolutionary multiobjective optimisation algorithms

8

Methods

• Solve a sequence of single-objective problems
• e.g., Scalarisations

• Constructive search approaches
• e.g., Multiobjective branch-and-bound

• Population-based approaches

• e.g., Evolutionary multiobjective optimisation algorithms

8

Methods

• Solve a sequence of single-objective problems
• e.g., Scalarisations

• Constructive search approaches
• e.g., Multiobjective branch-and-bound

• Population-based approaches
• e.g., Evolutionary multiobjective optimisation algorithms

9

Scalarisations

• Transform the multiobjective problem into a (parameterised)

single-objective problem

• Solve multiple times with different scalarisation parameters

• Examples of scalarisations

9

Scalarisations

• Transform the multiobjective problem into a (parameterised)

single-objective problem

• Solve multiple times with different scalarisation parameters

• Examples of scalarisations

9

Scalarisations

• Transform the multiobjective problem into a (parameterised)

single-objective problem

• Solve multiple times with different scalarisation parameters

• Examples of scalarisations

• Weighted sum scalarisation

min
x∈Ω

d∑
i=1

wifi(x)

• ε-constraint scalarisation

min
x∈Ω

f1(x)

s.t. fi(x) 6 εi, i = 2, . . . ,d

9

Scalarisations

• Transform the multiobjective problem into a (parameterised)

single-objective problem

• Solve multiple times with different scalarisation parameters

• Examples of scalarisations

• Weighted sum scalarisation

min
x∈Ω

d∑
i=1

wifi(x)

• ε-constraint scalarisation

min
x∈Ω

f1(x)

s.t. fi(x) 6 εi, i = 2, . . . ,d

f1(x)

f2(x)

9

Scalarisations

• Transform the multiobjective problem into a (parameterised)

single-objective problem

• Solve multiple times with different scalarisation parameters

• Examples of scalarisations

• Weighted sum scalarisation

min
x∈Ω

d∑
i=1

wifi(x)

• ε-constraint scalarisation

min
x∈Ω

f1(x)

s.t. fi(x) 6 εi, i = 2, . . . ,d

f1(x)

f2(x)

9

Scalarisations

• Transform the multiobjective problem into a (parameterised)

single-objective problem

• Solve multiple times with different scalarisation parameters

• Examples of scalarisations

• Weighted sum scalarisation

min
x∈Ω

d∑
i=1

wifi(x)

• ε-constraint scalarisation

min
x∈Ω

f1(x)

s.t. fi(x) 6 εi, i = 2, . . . ,d
f1(x)

f2(x)

9

Scalarisations

• Transform the multiobjective problem into a (parameterised)

single-objective problem

• Solve multiple times with different scalarisation parameters

• Examples of scalarisations

• Weighted sum scalarisation

min
x∈Ω

d∑
i=1

wifi(x)

• ε-constraint scalarisation

min
x∈Ω

f1(x)

s.t. fi(x) 6 εi, i = 2, . . . ,d
f1(x)

f2(x)

9

Scalarisations

• Transform the multiobjective problem into a (parameterised)

single-objective problem

• Solve multiple times with different scalarisation parameters

• Examples of scalarisations

• Desirable properties

• Correctness: Optimal solutions of a scalarisation are always (weakly)

efficient solutions

• Completeness: Every point in the Pareto front can be determined by an

appropriate choice of the parameters

9

Scalarisations

• Transform the multiobjective problem into a (parameterised)

single-objective problem

• Solve multiple times with different scalarisation parameters

• Examples of scalarisations

• Desirable properties

• Correctness: Optimal solutions of a scalarisation are always (weakly)

efficient solutions

• Completeness: Every point in the Pareto front can be determined by an

appropriate choice of the parameters

9

Scalarisations

• Transform the multiobjective problem into a (parameterised)

single-objective problem

• Solve multiple times with different scalarisation parameters

• Examples of scalarisations

• Desirable properties

• Correctness: Optimal solutions of a scalarisation are always (weakly)

efficient solutions

• Completeness: Every point in the Pareto front can be determined by an

appropriate choice of the parameters

10

Multiobjective Branch-and-Bound

• Branching

• Branching strategy (e.g., choose next branching variable xi)
• Partitioning procedure (e.g., set branching variable to 0 or 1)
• Static vs dynamic

• Bounding

• Lower bound on the objective values of the solutions in the subtree
• Upper bound on the objective value of the optimal solution

10

Multiobjective Branch-and-Bound

• Branching
• Branching strategy (e.g., choose next branching variable xi)

• Partitioning procedure (e.g., set branching variable to 0 or 1)
• Static vs dynamic

• Bounding

• Lower bound on the objective values of the solutions in the subtree
• Upper bound on the objective value of the optimal solution

...

10

Multiobjective Branch-and-Bound

• Branching
• Branching strategy (e.g., choose next branching variable xi)
• Partitioning procedure (e.g., set branching variable to 0 or 1)

• Static vs dynamic

• Bounding

• Lower bound on the objective values of the solutions in the subtree
• Upper bound on the objective value of the optimal solution

...

10

Multiobjective Branch-and-Bound

• Branching
• Branching strategy (e.g., choose next branching variable xi)
• Partitioning procedure (e.g., set branching variable to 0 or 1)
• Static vs dynamic

• Bounding

• Lower bound on the objective values of the solutions in the subtree
• Upper bound on the objective value of the optimal solution

...

10

Multiobjective Branch-and-Bound

• Branching
• Branching strategy (e.g., choose next branching variable xi)
• Partitioning procedure (e.g., set branching variable to 0 or 1)
• Static vs dynamic

• Bounding

• Lower bound on the objective values of the solutions in the subtree
• Upper bound on the objective value of the optimal solution

...

f1(x)

f2(x)

10

Multiobjective Branch-and-Bound

• Branching
• Branching strategy (e.g., choose next branching variable xi)
• Partitioning procedure (e.g., set branching variable to 0 or 1)
• Static vs dynamic

• Bounding (in the single-objective case)
• Lower bound on the objective values of the solutions in the subtree

• Upper bound on the objective value of the optimal solution

...

f1(x)

f2(x)

10

Multiobjective Branch-and-Bound

• Branching
• Branching strategy (e.g., choose next branching variable xi)
• Partitioning procedure (e.g., set branching variable to 0 or 1)
• Static vs dynamic

• Bounding (in the single-objective case)
• Lower bound on the objective values of the solutions in the subtree
• Upper bound on the objective value of the optimal solution

...

f1(x)

f2(x)

10

Multiobjective Branch-and-Bound

• Branching
• Branching strategy (e.g., choose next branching variable xi)
• Partitioning procedure (e.g., set branching variable to 0 or 1)
• Static vs dynamic

• Bounding (in the multiobjective case)
• Lower bound set on the objective points of the solutions in the subtree
• Upper bound set on the Pareto front

...

f1(x)

f2(x) LB

10

Multiobjective Branch-and-Bound

• Branching
• Branching strategy (e.g., choose next branching variable xi)
• Partitioning procedure (e.g., set branching variable to 0 or 1)
• Static vs dynamic

• Bounding (in the multiobjective case)
• Lower bound set on the objective points of the solutions in the subtree
• Upper bound set on the Pareto front

...

f1(x)

f2(x) LB

10

Multiobjective Branch-and-Bound

• Branching
• Branching strategy (e.g., choose next branching variable xi)
• Partitioning procedure (e.g., set branching variable to 0 or 1)
• Static vs dynamic

• Bounding (in the multiobjective case)
• Lower bound set on the objective points of the solutions in the subtree
• Upper bound set on the Pareto front

...

f1(x)

f2(x) LB

10

Multiobjective Branch-and-Bound

• Branching
• Branching strategy (e.g., choose next branching variable xi)
• Partitioning procedure (e.g., set branching variable to 0 or 1)
• Static vs dynamic

• Bounding (in the multiobjective case)
• Lower bound set on the objective points of the solutions in the subtree
• Upper bound set on the Pareto front

...

f1(x)

f2(x) LB
UB

10

Multiobjective Branch-and-Bound

• Branching
• Branching strategy (e.g., choose next branching variable xi)
• Partitioning procedure (e.g., set branching variable to 0 or 1)
• Static vs dynamic

• Bounding (in the multiobjective case)
• Lower bound set on the objective points of the solutions in the subtree
• Upper bound set on the Pareto front

...

f1(x)

f2(x) LB
UB

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

Initial population (generation 0)

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

Generate offspring

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

(Environmental) selection

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

(Environmental) selection:

Discard solutions

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

Population (generation 1)

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

Generate offspring

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

(Environmental) selection

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

(Environmental) selection:

Discard solutions

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

Population (generation 2)

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

Generate offspring

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

(Environmental) selection

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

(Environmental) selection:

Discard solutions

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

Population (generation 3)

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

Generate offspring

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

(Environmental) selection:

Which solutions to discard?

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions

• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

(Environmental) selection:

Which solutions to discard?

11

Evolutionary Multiobjective Optimisation (EMO)

• Evolutionary Algorithms (EAs)
• Inspired on natural selection
• Well-suited for multiobjective optimisation
• Search for multiple nondominated solutions simultaneously

• Generation of new solutions
• Selection

• Preference information
• Discriminate incomparable solutions
• When not available

• Keep a diverse set of solutions

f1(x)

f2(x)

(Environmental) selection:

Which solutions to discard?

12

Selection in EMO

• Crucial to the EA’s ability to approximate the Pareto front as a whole

• Main concerns:

• Select the best solutions
• Keep solutions spread along the Pareto Front

• Two different approaches:

• Focused on individual quality

• Select the best individuals
• Then, use diversity preservation techniques

• Focused on set quality

• Based on (set-)quality indicators
• Given a set of n solutions find the subset of k solutions that maximizes a given

quality indicator

12

Selection in EMO

• Crucial to the EA’s ability to approximate the Pareto front as a whole

• Main concerns:

• Select the best solutions
• Keep solutions spread along the Pareto Front

• Two different approaches:

• Focused on individual quality

• Select the best individuals
• Then, use diversity preservation techniques

• Focused on set quality

• Based on (set-)quality indicators
• Given a set of n solutions find the subset of k solutions that maximizes a given

quality indicator

12

Selection in EMO

• Crucial to the EA’s ability to approximate the Pareto front as a whole

• Main concerns:
• Select the best solutions

• Keep solutions spread along the Pareto Front

• Two different approaches:

• Focused on individual quality

• Select the best individuals
• Then, use diversity preservation techniques

• Focused on set quality

• Based on (set-)quality indicators
• Given a set of n solutions find the subset of k solutions that maximizes a given

quality indicator

12

Selection in EMO

• Crucial to the EA’s ability to approximate the Pareto front as a whole

• Main concerns:
• Select the best solutions
• Keep solutions spread along the Pareto Front

• Two different approaches:

• Focused on individual quality

• Select the best individuals
• Then, use diversity preservation techniques

• Focused on set quality

• Based on (set-)quality indicators
• Given a set of n solutions find the subset of k solutions that maximizes a given

quality indicator

12

Selection in EMO

• Crucial to the EA’s ability to approximate the Pareto front as a whole

• Main concerns:
• Select the best solutions
• Keep solutions spread along the Pareto Front

• Two different approaches:

• Focused on individual quality

• Select the best individuals
• Then, use diversity preservation techniques

• Focused on set quality

• Based on (set-)quality indicators
• Given a set of n solutions find the subset of k solutions that maximizes a given

quality indicator

12

Selection in EMO

• Crucial to the EA’s ability to approximate the Pareto front as a whole

• Main concerns:
• Select the best solutions
• Keep solutions spread along the Pareto Front

• Two different approaches:
• Focused on individual quality

• Select the best individuals
• Then, use diversity preservation techniques

• Focused on set quality

• Based on (set-)quality indicators
• Given a set of n solutions find the subset of k solutions that maximizes a given

quality indicator

12

Selection in EMO

• Crucial to the EA’s ability to approximate the Pareto front as a whole

• Main concerns:
• Select the best solutions
• Keep solutions spread along the Pareto Front

• Two different approaches:
• Focused on individual quality

• Select the best individuals

• Then, use diversity preservation techniques

• Focused on set quality

• Based on (set-)quality indicators
• Given a set of n solutions find the subset of k solutions that maximizes a given

quality indicator

12

Selection in EMO

• Crucial to the EA’s ability to approximate the Pareto front as a whole

• Main concerns:
• Select the best solutions
• Keep solutions spread along the Pareto Front

• Two different approaches:
• Focused on individual quality

• Select the best individuals
• Then, use diversity preservation techniques

• Focused on set quality

• Based on (set-)quality indicators
• Given a set of n solutions find the subset of k solutions that maximizes a given

quality indicator

12

Selection in EMO

• Crucial to the EA’s ability to approximate the Pareto front as a whole

• Main concerns:
• Select the best solutions
• Keep solutions spread along the Pareto Front

• Two different approaches:
• Focused on individual quality

• Select the best individuals
• Then, use diversity preservation techniques

• Focused on set quality

• Based on (set-)quality indicators
• Given a set of n solutions find the subset of k solutions that maximizes a given

quality indicator

12

Selection in EMO

• Crucial to the EA’s ability to approximate the Pareto front as a whole

• Main concerns:
• Select the best solutions
• Keep solutions spread along the Pareto Front

• Two different approaches:
• Focused on individual quality

• Select the best individuals
• Then, use diversity preservation techniques

• Focused on set quality
• Based on (set-)quality indicators

• Given a set of n solutions find the subset of k solutions that maximizes a given

quality indicator

12

Selection in EMO

• Crucial to the EA’s ability to approximate the Pareto front as a whole

• Main concerns:
• Select the best solutions
• Keep solutions spread along the Pareto Front

• Two different approaches:
• Focused on individual quality

• Select the best individuals
• Then, use diversity preservation techniques

• Focused on set quality
• Based on (set-)quality indicators
• Given a set of n solutions find the subset of k solutions that maximizes a given

quality indicator

12

Performance Assessment

• Different optimisation algorithms usually produce different results

• Different runs of the same algorithm may produce different results (e.g.,

stochastic algorithms)

• The solutions produced in one optimisation run may be incomparable to

those produced in another run
• Two types of methods to assess the performance of multiobjective
optimisation algorithms

• (Set-)Quality Indicators (e.g., the Hypervolume Indicator)
• Empirical Attainment Function

f1(x)

f2(x)
Algorithm 1
Algorithm 2

12

Performance Assessment

• Different optimisation algorithms usually produce different results
• Different runs of the same algorithm may produce different results (e.g.,

stochastic algorithms)

• The solutions produced in one optimisation run may be incomparable to

those produced in another run
• Two types of methods to assess the performance of multiobjective
optimisation algorithms

• (Set-)Quality Indicators (e.g., the Hypervolume Indicator)
• Empirical Attainment Function

f1(x)

f2(x)
Algorithm 1
Algorithm 2

12

Performance Assessment

• Different optimisation algorithms usually produce different results
• Different runs of the same algorithm may produce different results (e.g.,

stochastic algorithms)

• The solutions produced in one optimisation run may be incomparable to

those produced in another run

• Two types of methods to assess the performance of multiobjective
optimisation algorithms

• (Set-)Quality Indicators (e.g., the Hypervolume Indicator)
• Empirical Attainment Function

f1(x)

f2(x)
Algorithm 1
Algorithm 2

12

Performance Assessment

• Different optimisation algorithms usually produce different results
• Different runs of the same algorithm may produce different results (e.g.,

stochastic algorithms)

• The solutions produced in one optimisation run may be incomparable to

those produced in another run
• Two types of methods to assess the performance of multiobjective
optimisation algorithms

• (Set-)Quality Indicators (e.g., the Hypervolume Indicator)
• Empirical Attainment Function

f1(x)

f2(x)
Algorithm 1
Algorithm 2

12

Performance Assessment

• Different optimisation algorithms usually produce different results
• Different runs of the same algorithm may produce different results (e.g.,

stochastic algorithms)

• The solutions produced in one optimisation run may be incomparable to

those produced in another run
• Two types of methods to assess the performance of multiobjective
optimisation algorithms

• (Set-)Quality Indicators (e.g., the Hypervolume Indicator)

• Empirical Attainment Function

f1(x)

f2(x)
Algorithm 1
Algorithm 2

12

Performance Assessment

• Different optimisation algorithms usually produce different results
• Different runs of the same algorithm may produce different results (e.g.,

stochastic algorithms)

• The solutions produced in one optimisation run may be incomparable to

those produced in another run
• Two types of methods to assess the performance of multiobjective
optimisation algorithms

• (Set-)Quality Indicators (e.g., the Hypervolume Indicator)
• Empirical Attainment Function

f1(x)

f2(x)
Algorithm 1
Algorithm 2

13

(Set-)Quality indicators

• A (set-)quality indicator I is a function that maps a set of points in the

objective space to a real value

• Examples:

• The hypervolume indicator

• (additive) ε-indicator

• Performance assessment

• Guide the search process (subset selection view)

• Find a subset of k solutions that maximizes a given quality indicator

13

(Set-)Quality indicators

• A (set-)quality indicator I is a function that maps a set of points in the

objective space to a real value

• Examples:

• The hypervolume indicator

• (additive) ε-indicator

r

f1(x)

f2(x)

• Performance assessment

• Guide the search process (subset selection view)

• Find a subset of k solutions that maximizes a given quality indicator

13

(Set-)Quality indicators

• A (set-)quality indicator I is a function that maps a set of points in the

objective space to a real value

• Examples:

• The hypervolume indicator

• (additive) ε-indicator

r

f1(x)

f2(x)

f1(x)

f2(x)
outcome set
reference set

• Performance assessment

• Guide the search process (subset selection view)

• Find a subset of k solutions that maximizes a given quality indicator

13

(Set-)Quality indicators

• A (set-)quality indicator I is a function that maps a set of points in the

objective space to a real value

• Examples:

• The hypervolume indicator

• (additive) ε-indicator

r

f1(x)

f2(x)

f1(x)

f2(x)
outcome set
reference set

• Performance assessment

• Guide the search process (subset selection view)

• Find a subset of k solutions that maximizes a given quality indicator

13

(Set-)Quality indicators

• A (set-)quality indicator I is a function that maps a set of points in the

objective space to a real value

• Examples:

• The hypervolume indicator

• (additive) ε-indicator

r

f1(x)

f2(x)

f1(x)

f2(x)
outcome set
reference set

• Performance assessment

• Guide the search process (subset selection view)
• Find a subset of k solutions that maximizes a given quality indicator

13

Properties of Quality Indicators

Scaling invariance/independence

f1(x)

f2(x)

f1(x)

f2(x)

A1 = {×}, B1 = { } A2 = {×}, B2 = { }

13

Properties of Quality Indicators

Scaling invariance/independence

f1(x)

f2(x)

f1(x)

f2(x)

A1 = {×}, B1 = { } A2 = {×}, B2 = { }

Scaling invariance: I(A1) = I(A2) and I(B1) = I(B2)

13

Properties of Quality Indicators

Scaling invariance/independence

f1(x)

f2(x)

f1(x)

f2(x)

A1 = {×}, B1 = { } A2 = {×}, B2 = { }

Scaling invariance: I(A1) = I(A2) and I(B1) = I(B2)

Scaling independence: I(A1) ≥ I(B1) ⇒ I(A2) ≥ I(B2)

14

Properties of Quality Indicators

• Monotonicity
• Given a set-dominance relation R (e.g.: weak dominance, �)

• A set-indicator I is weakly R-monotonic if, given two point sets A,B ⊂ Rd ,
A R B implies I(A) ≥ I(B).

• I is weakly �-monotonic

• If A R B implies I(A) > I(B), the indicator is strictly R-monotonic

• I is strictly ≺-monotonic
• I is strictly ≺·-monotonic
• I is strictly ≺≺-monotonic

14

Properties of Quality Indicators

• Monotonicity
• Given a set-dominance relation R (e.g.: weak dominance, �)
• A set-indicator I is weakly R-monotonic if, given two point sets A,B ⊂ Rd ,

A R B implies I(A) ≥ I(B).

• I is weakly �-monotonic
• If A R B implies I(A) > I(B), the indicator is strictly R-monotonic

• I is strictly ≺-monotonic
• I is strictly ≺·-monotonic
• I is strictly ≺≺-monotonic

14

Properties of Quality Indicators

• Monotonicity
• Given a set-dominance relation R (e.g.: weak dominance, �)
• A set-indicator I is weakly R-monotonic if, given two point sets A,B ⊂ Rd ,

A R B implies I(A) ≥ I(B).
• I is weakly �-monotonic

• If A R B implies I(A) > I(B), the indicator is strictly R-monotonic

• I is strictly ≺-monotonic
• I is strictly ≺·-monotonic
• I is strictly ≺≺-monotonic

f1(x)

f2(x)

{×} � { } ⇒ I({×}) > I({ })

14

Properties of Quality Indicators

• Monotonicity
• Given a set-dominance relation R (e.g.: weak dominance, �)
• A set-indicator I is weakly R-monotonic if, given two point sets A,B ⊂ Rd ,

A R B implies I(A) ≥ I(B).
• I is weakly �-monotonic

• If A R B implies I(A) > I(B), the indicator is strictly R-monotonic

• I is strictly ≺-monotonic
• I is strictly ≺·-monotonic
• I is strictly ≺≺-monotonic

14

Properties of Quality Indicators

• Monotonicity
• Given a set-dominance relation R (e.g.: weak dominance, �)
• A set-indicator I is weakly R-monotonic if, given two point sets A,B ⊂ Rd ,

A R B implies I(A) ≥ I(B).
• I is weakly �-monotonic

• If A R B implies I(A) > I(B), the indicator is strictly R-monotonic
• I is strictly ≺-monotonic

• I is strictly ≺·-monotonic
• I is strictly ≺≺-monotonic

f1(x)

f2(x)

{×} ≺ { } ⇒ I({×}) > I({ })

14

Properties of Quality Indicators

• Monotonicity
• Given a set-dominance relation R (e.g.: weak dominance, �)
• A set-indicator I is weakly R-monotonic if, given two point sets A,B ⊂ Rd ,

A R B implies I(A) ≥ I(B).
• I is weakly �-monotonic

• If A R B implies I(A) > I(B), the indicator is strictly R-monotonic
• I is strictly ≺-monotonic
• I is strictly ≺·-monotonic

• I is strictly ≺≺-monotonic

f1(x)

f2(x)

{×} ≺· { } ⇒ I({×}) > I({ })

14

Properties of Quality Indicators

• Monotonicity
• Given a set-dominance relation R (e.g.: weak dominance, �)
• A set-indicator I is weakly R-monotonic if, given two point sets A,B ⊂ Rd ,

A R B implies I(A) ≥ I(B).
• I is weakly �-monotonic

• If A R B implies I(A) > I(B), the indicator is strictly R-monotonic
• I is strictly ≺-monotonic
• I is strictly ≺·-monotonic
• I is strictly ≺≺-monotonic

f1(x)

f2(x)

{×} ≺≺ { } ⇒ I({×}) > I({ })

14

Properties of Quality Indicators

• Monotonicity
• Given a set-dominance relation R (e.g.: weak dominance, �)
• A set-indicator I is weakly R-monotonic if, given two point sets A,B ⊂ Rd ,

A R B implies I(A) ≥ I(B).
• I is weakly �-monotonic

• If A R B implies I(A) > I(B), the indicator is strictly R-monotonic
• I is strictly ≺-monotonic
• I is strictly ≺·-monotonic
• I is strictly ≺≺-monotonic

• Allow to infer a lower bound on the number of Pareto-optimal solution in

any subset maximizing the indicator I

14

Properties of Quality Indicators

• Monotonicity
• Given a set-dominance relation R (e.g.: weak dominance, �)
• A set-indicator I is weakly R-monotonic if, given two point sets A,B ⊂ Rd ,

A R B implies I(A) ≥ I(B).
• I is weakly �-monotonic ⇒ ∃S∈A |S ∩ P| = min(k, |P|)

• If A R B implies I(A) > I(B), the indicator is strictly R-monotonic
• I is strictly ≺-monotonic
• I is strictly ≺·-monotonic
• I is strictly ≺≺-monotonic

• Allow to infer a lower bound on the number of Pareto-optimal solution in

any subset maximizing the indicator I

Feasible points S ⊂ Rd ; Pareto front P ⊆ S; all indicator-optimal subsets A ⊆ 2S

14

Properties of Quality Indicators

• Monotonicity
• Given a set-dominance relation R (e.g.: weak dominance, �)
• A set-indicator I is weakly R-monotonic if, given two point sets A,B ⊂ Rd ,

A R B implies I(A) ≥ I(B).
• I is weakly �-monotonic ⇒ ∃S∈A |S ∩ P| = min(k, |P|)

• If A R B implies I(A) > I(B), the indicator is strictly R-monotonic
• I is strictly ≺-monotonic ⇒ ∀S∈A |S ∩ P| = min(k, |P|)
• I is strictly ≺·-monotonic
• I is strictly ≺≺-monotonic

• Allow to infer a lower bound on the number of Pareto-optimal solution in

any subset maximizing the indicator I

Feasible points S ⊂ Rd ; Pareto front P ⊆ S; all indicator-optimal subsets A ⊆ 2S

14

Properties of Quality Indicators

• Monotonicity
• Given a set-dominance relation R (e.g.: weak dominance, �)
• A set-indicator I is weakly R-monotonic if, given two point sets A,B ⊂ Rd ,

A R B implies I(A) ≥ I(B).
• I is weakly �-monotonic ⇒ ∃S∈A |S ∩ P| = min(k, |P|)

• If A R B implies I(A) > I(B), the indicator is strictly R-monotonic
• I is strictly ≺-monotonic ⇒ ∀S∈A |S ∩ P| = min(k, |P|)
• I is strictly ≺·-monotonic ⇒ ∀S∈A |S ∩ P| > 1
• I is strictly ≺≺-monotonic

• Allow to infer a lower bound on the number of Pareto-optimal solution in

any subset maximizing the indicator I

Feasible points S ⊂ Rd ; Pareto front P ⊆ S; all indicator-optimal subsets A ⊆ 2S

14

Properties of Quality Indicators

• Monotonicity
• Given a set-dominance relation R (e.g.: weak dominance, �)
• A set-indicator I is weakly R-monotonic if, given two point sets A,B ⊂ Rd ,

A R B implies I(A) ≥ I(B).
• I is weakly �-monotonic ⇒ ∃S∈A |S ∩ P| = min(k, |P|)

• If A R B implies I(A) > I(B), the indicator is strictly R-monotonic
• I is strictly ≺-monotonic ⇒ ∀S∈A |S ∩ P| = min(k, |P|)
• I is strictly ≺·-monotonic ⇒ ∀S∈A |S ∩ P| > 1
• I is strictly ≺≺-monotonic ⇒ ∀S∈A |S ∩ P| > 0

• Allow to infer a lower bound on the number of Pareto-optimal solution in

any subset maximizing the indicator I

Feasible points S ⊂ Rd ; Pareto front P ⊆ S; all indicator-optimal subsets A ⊆ 2S

15

Properties of Quality Indicators

• Optimal µ-distributions
• Characterize the indicator-optimal subsets of

size up to µ

• Characteristics

• Existence
• Uniqueness
• Connection to the Pareto front
• Monotonicity with respect to µ
• Influence of parameters
• Distribution

f1(x)

f2(x)

15

Properties of Quality Indicators

• Optimal µ-distributions
• Characterize the indicator-optimal subsets of

size up to µ

• Characteristics

• Existence
• Uniqueness
• Connection to the Pareto front
• Monotonicity with respect to µ
• Influence of parameters
• Distribution

f1(x)

f2(x)

15

Properties of Quality Indicators

• Optimal µ-distributions
• Characterize the indicator-optimal subsets of

size up to µ

• Characteristics
• Existence

• Uniqueness
• Connection to the Pareto front
• Monotonicity with respect to µ
• Influence of parameters
• Distribution

f1(x)

f2(x)

15

Properties of Quality Indicators

• Optimal µ-distributions
• Characterize the indicator-optimal subsets of

size up to µ

• Characteristics
• Existence
• Uniqueness

• Connection to the Pareto front
• Monotonicity with respect to µ
• Influence of parameters
• Distribution

f1(x)

f2(x)

15

Properties of Quality Indicators

• Optimal µ-distributions
• Characterize the indicator-optimal subsets of

size up to µ

• Characteristics
• Existence
• Uniqueness
• Connection to the Pareto front

• Monotonicity with respect to µ
• Influence of parameters
• Distribution

f1(x)

f2(x)

15

Properties of Quality Indicators

• Optimal µ-distributions
• Characterize the indicator-optimal subsets of

size up to µ

• Characteristics
• Existence
• Uniqueness
• Connection to the Pareto front
• Monotonicity with respect to µ

• Influence of parameters
• Distribution

f1(x)

f2(x)

15

Properties of Quality Indicators

• Optimal µ-distributions
• Characterize the indicator-optimal subsets of

size up to µ

• Characteristics
• Existence
• Uniqueness
• Connection to the Pareto front
• Monotonicity with respect to µ
• Influence of parameters

• Distribution

f1(x)

f2(x)

15

Properties of Quality Indicators

• Optimal µ-distributions
• Characterize the indicator-optimal subsets of

size up to µ

• Characteristics
• Existence
• Uniqueness
• Connection to the Pareto front
• Monotonicity with respect to µ
• Influence of parameters
• Distribution

f1(x)

f2(x)

16

Properties of the Hypervolume Indicator

• Scaling independent
• The order defined by the hypervolume indicator is preserved under linear

scaling transformations of the objective space

• Strictly monotonic with respect to (strict) set-dominance (≺)
• Given two point sets A,B ⊂ Rd , if A ≺ B then I(A) > I(B)

• All solutions in an optimal subset are Pareto-optimal solutions

• Optimal µ-distributions
• Ex.: The points in an optimal subset of a two-dimensional continuous linear

Pareto front are evenly spaced

f1(x)

f2(x)

f1(x)

f2(x)

A1 = {×}, B1 = { } A2 = {×}, B2 = { }
H(A1) ≥ H(B1) ⇒ H(A2) ≥ H(B2)

16

Properties of the Hypervolume Indicator

• Scaling independent
• The order defined by the hypervolume indicator is preserved under linear

scaling transformations of the objective space
• Strictly monotonic with respect to (strict) set-dominance (≺)

• Given two point sets A,B ⊂ Rd , if A ≺ B then I(A) > I(B)
• All solutions in an optimal subset are Pareto-optimal solutions

• Optimal µ-distributions
• Ex.: The points in an optimal subset of a two-dimensional continuous linear

Pareto front are evenly spaced

f1(x)

f2(x)

{×} ≺ { } ⇒ H({×}) > H({ })

16

Properties of the Hypervolume Indicator

• Scaling independent
• The order defined by the hypervolume indicator is preserved under linear

scaling transformations of the objective space
• Strictly monotonic with respect to (strict) set-dominance (≺)

• Given two point sets A,B ⊂ Rd , if A ≺ B then I(A) > I(B)
• All solutions in an optimal subset are Pareto-optimal solutions

• Optimal µ-distributions
• Ex.: The points in an optimal subset of a two-dimensional continuous linear

Pareto front are evenly spaced

17

Empirical Attainment Function

• Allows the distribution of the outcomes of different runs of an

optimisation algorithm to be studied in terms of location

• Example with 3 runs

•

17

Empirical Attainment Function

• Allows the distribution of the outcomes of different runs of an

optimisation algorithm to be studied in terms of location

• Example with 3 runs
•

f1(x)

f2(x) Run 1
Run 2
Run 3

17

Empirical Attainment Function

• Allows the distribution of the outcomes of different runs of an

optimisation algorithm to be studied in terms of location

• Example with 3 runs
• Region of the space attained by at least 1

3 of the runs

f1(x)

f2(x)

17

Empirical Attainment Function

• Allows the distribution of the outcomes of different runs of an

optimisation algorithm to be studied in terms of location

• Example with 3 runs
• Region of the space attained by at least 2

3 of the runs

f1(x)

f2(x)

17

Empirical Attainment Function

• Allows the distribution of the outcomes of different runs of an

optimisation algorithm to be studied in terms of location

• Example with 3 runs
• Region of the space attained by at least 3

3 of the runs

f1(x)

f2(x)

17

Empirical Attainment Function

• Allows the distribution of the outcomes of different runs of an

optimisation algorithm to be studied in terms of location

• Example with 3 runs
• All attainment regions

f1(x)

f2(x)

17

API extension to Multiobjetive Optimisation

Only affects solution evaluation:

objective_value(Solution) : double[0..1]
objective_value_increment(Move, Solution) : double[0..1]

Considers new abstract types Value and Increment:

objective_value(Solution) : Value[0..1]
objective_value_increment(Move, Solution) : Increment[0..1]

18

API extension to Multiobjetive Optimisation

New type: PreferenceModel
Scalarisations:

scalarisation(PreferenceModel, Value): real

Preference relations:

better_or_indifferent(PreferenceModel, Value, Value): boolean
better(PreferenceModel, Value, Value): boolean
indifferent(PreferenceModel, Value, Value): boolean
incomparable(PreferenceModel, Value, Value): boolean

compare(PreferenceModel, Value, Value):
{Better | Worse | Indifferent}

compare_partial(PreferenceModel, Value, Value):
{Better | Worse | Indifferent | Incomparable}

19

API extension to Multiobjetive Optimisation

Other non-scalarising approaches

selection(PreferenceModel, Value[0..*], n=None) : int[0..*]
ranking(PreferenceModel, Value[0..*]) : int[0..*]

19

Concluding Remarks

• Solving multiobjective optimisation problem poses challenges

• Size of the Pareto front
• Unknown preferences
• Preference modelling

• It is important to understand

• The implication of each algorithmic approach

• Biases towards (sets of) solutions
• Guarantees regarding the quality of the outcome set

• The theoretical properties of quality indicators and their implications

• Leads to better usage of optimisation algorithms and performance

assessment tools

• The API allows to incorporate different models of preferences

19

Concluding Remarks

• Solving multiobjective optimisation problem poses challenges
• Size of the Pareto front

• Unknown preferences
• Preference modelling

• It is important to understand

• The implication of each algorithmic approach

• Biases towards (sets of) solutions
• Guarantees regarding the quality of the outcome set

• The theoretical properties of quality indicators and their implications

• Leads to better usage of optimisation algorithms and performance

assessment tools

• The API allows to incorporate different models of preferences

19

Concluding Remarks

• Solving multiobjective optimisation problem poses challenges
• Size of the Pareto front
• Unknown preferences

• Preference modelling

• It is important to understand

• The implication of each algorithmic approach

• Biases towards (sets of) solutions
• Guarantees regarding the quality of the outcome set

• The theoretical properties of quality indicators and their implications

• Leads to better usage of optimisation algorithms and performance

assessment tools

• The API allows to incorporate different models of preferences

19

Concluding Remarks

• Solving multiobjective optimisation problem poses challenges
• Size of the Pareto front
• Unknown preferences
• Preference modelling

• It is important to understand

• The implication of each algorithmic approach

• Biases towards (sets of) solutions
• Guarantees regarding the quality of the outcome set

• The theoretical properties of quality indicators and their implications

• Leads to better usage of optimisation algorithms and performance

assessment tools

• The API allows to incorporate different models of preferences

19

Concluding Remarks

• Solving multiobjective optimisation problem poses challenges
• Size of the Pareto front
• Unknown preferences
• Preference modelling

• It is important to understand

• The implication of each algorithmic approach

• Biases towards (sets of) solutions
• Guarantees regarding the quality of the outcome set

• The theoretical properties of quality indicators and their implications

• Leads to better usage of optimisation algorithms and performance

assessment tools

• The API allows to incorporate different models of preferences

19

Concluding Remarks

• Solving multiobjective optimisation problem poses challenges
• Size of the Pareto front
• Unknown preferences
• Preference modelling

• It is important to understand
• The implication of each algorithmic approach

• Biases towards (sets of) solutions
• Guarantees regarding the quality of the outcome set

• The theoretical properties of quality indicators and their implications

• Leads to better usage of optimisation algorithms and performance

assessment tools

• The API allows to incorporate different models of preferences

19

Concluding Remarks

• Solving multiobjective optimisation problem poses challenges
• Size of the Pareto front
• Unknown preferences
• Preference modelling

• It is important to understand
• The implication of each algorithmic approach

• Biases towards (sets of) solutions

• Guarantees regarding the quality of the outcome set

• The theoretical properties of quality indicators and their implications

• Leads to better usage of optimisation algorithms and performance

assessment tools

• The API allows to incorporate different models of preferences

19

Concluding Remarks

• Solving multiobjective optimisation problem poses challenges
• Size of the Pareto front
• Unknown preferences
• Preference modelling

• It is important to understand
• The implication of each algorithmic approach

• Biases towards (sets of) solutions
• Guarantees regarding the quality of the outcome set

• The theoretical properties of quality indicators and their implications

• Leads to better usage of optimisation algorithms and performance

assessment tools

• The API allows to incorporate different models of preferences

19

Concluding Remarks

• Solving multiobjective optimisation problem poses challenges
• Size of the Pareto front
• Unknown preferences
• Preference modelling

• It is important to understand
• The implication of each algorithmic approach

• Biases towards (sets of) solutions
• Guarantees regarding the quality of the outcome set

• The theoretical properties of quality indicators and their implications

• Leads to better usage of optimisation algorithms and performance

assessment tools

• The API allows to incorporate different models of preferences

19

Concluding Remarks

• Solving multiobjective optimisation problem poses challenges
• Size of the Pareto front
• Unknown preferences
• Preference modelling

• It is important to understand
• The implication of each algorithmic approach

• Biases towards (sets of) solutions
• Guarantees regarding the quality of the outcome set

• The theoretical properties of quality indicators and their implications

• Leads to better usage of optimisation algorithms and performance

assessment tools

• The API allows to incorporate different models of preferences

19

Concluding Remarks

• Solving multiobjective optimisation problem poses challenges
• Size of the Pareto front
• Unknown preferences
• Preference modelling

• It is important to understand
• The implication of each algorithmic approach

• Biases towards (sets of) solutions
• Guarantees regarding the quality of the outcome set

• The theoretical properties of quality indicators and their implications

• Leads to better usage of optimisation algorithms and performance

assessment tools

• The API allows to incorporate different models of preferences

20

Thanks!

21

Acknowledgments

This presentation is based upon work from COST Action Ran-

domised Optimisation Algorithms Research Network (ROAR-

NET), CA22137, supported by COST (European Cooperation in

Science and Technology).

This work is financed by National Funds through the Portuguese

funding agency, FCT - Fundação para a Ciência e a Tecnologia

within project: 2022.08367.CEECIND/CP1717/CT0001

	Outline
	Multiobjetive Optimisation
	Example
	Definition and concepts
	Pareto dominance

	Preference Articulation
	Preference Information
	Preference Articulation as a Process
	Preference Modelling

	Solving Multiobjective Optimisation Problems
	Approaches
	Methods
	EMO Selection

	Performance Assessment
	Performance Assessment
	(Set-)Quality indicators
	Properties
	Empirical Attainment Function

	API extension to Multiobjetive Optimisation
	Concluding Remarks

