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Multiobjective Optimisation
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Multiobjective Optimisation

® Considering minimisation:
min - f(x) = (f1(x), f2(x), ..., T4(x))
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Dominance Relations

Given u,v € RY:

® ( weakly dominates v (u < v)

. f2(x) 0 g°
e lfu<vforalll<i<d (@
® ( (strictly) dominates v (u < v) e*
e fu<vandvZ£u pL
e ( stongly dominates v (U < V)
o fu<yforalll <i<d
Given A c R? and u € A: @ .
e U js a nondominated point ~ Ak

e Ifthereis no v € A such that v < u O nondominated
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Set-Dominance Relations

Given A, B c RY:

® A weakly dominates B (A < B) fa(x) ]
® If VpepToea 10 < b
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Decision Making

e Conflicting objectives
® Pareto-optimal front

® Usually not known
® Possible infinite

® The best solution depends on the Decision Maker (DM) preferences
® Subjective information
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Preference Information

® Helps discriminate between incomparable solutions

® May be provided at different stages of the optimisation process

e Optimisation methods are classified according to when it is articulated
1. No-preference methods

® DM has no expectations
® Return a (any) Pareto-optimal solution

2. A posteriori methods

® Return the full or an approximation of the Pareto front
® DM then selects the most preferable solution

3. Interactive/progressive methods

® DM periodically expresses preferences during the optimisation process
® the search progresses towards the most preferable solution

4. A priori methods

® DM provides preference information pior to the optimisation
® Focus on solutions on the preferable regions



Preference Articulation as a Process

® The optimisation process does not have to be static

e Preference articulation can be viewed as a process

a priori
knowledge

DM

preference information

OA

objective values
(aquired knowledge)

results
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Preference Modelling

Useful for
e Favouring one of two incomparable solutions
e Handling constraints

Methods
e Utility/scalarisation functions
® Function that maps each solution to a value
® Examples
® \Weight-based (such as weighted sum)
® reference-point based
® Binary relation
® Pajrwise comparison between solution
® Some solutions may remain incomparable
® Should respect Pareto dominance
® Examples
® |lexicographic order
® preferability relation -
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Approaches

e Aim of (a posteriori) multiobjective optimisation algorithms
1. Find the whole Pareto front
2. Find a "good” subset of the Pareto front (a representation)
3. Find a "good” approximation of the Pareto front
® Guarantees regarding the outcome set
® The quality of each solution
® is it efficient or not?
® The quality of the set of solutions

® How well does it cover the Pareto front?
* How well are the points distributed along the Pareto front?
® Does it provide an approximation guarantee?

® Provide bounds on the location of the Pareto front
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e Solve a sequence of single-objective problems
® c.g, Scalarisations
e Constructive search approaches
® c.g, Multiobjective branch-and-bound
® Population-based approaches
® c.g, Evolutionary multiobjective optimisation algorithms
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e Transform the multiobjective problem into a (parameterised)
single-objective problem

¢ Solve multiple times with different scalarisation parameters
® Examples of scalarisations

® Weighted sum scalarisation

d
min Y~ w;f(x)
=1

A
fa(x)

XEQ 4
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Scalarisations

e Transform the multiobjective problem into a (parameterised)
single-objective problem

¢ Solve multiple times with different scalarisation parameters
® Examples of scalarisations

e Desirable properties

® Correctness: Optimal solutions of a scalarisation are always (weakly)
efficient solutions

® Completeness: Every point in the Pareto front can be determined by an
appropriate choice of the parameters
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e Evolutionary Algorithms (EAS)
® |nspired on natural selection
* Well-suited for multiobjective optimisation
® Search for multiple nondominated solutions simultaneously
® Generation of new solutions
® Selection
e Preference information
® Discriminate incomparable solutions
® When not available
® Keep a diverse set of solutions

fa(x)
(Environmental) selection:
Which solutions to discard?
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Selection in EMO

e Crucial to the EAs ability to approximate the Pareto front as a whole
® Main concerns:
® Select the best solutions
® Keep solutions spread along the Pareto Front
e Two different approaches:
® Focused on individual quality
® Select the best individuals
® Then, use diversity preservation techniques
® Focused on set quality
® Based on (set-)quality indicators
® Given a set of n solutions find the subset of k solutions that maximizes a given
quality indicator
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Performance Assessment

e Different optimisation algorithms usually produce different results
e Different runs of the same algorithm may produce different results (e.g,,
stochastic algorithms)
® The solutions produced in one optimisation run may be incomparable to
those produced in another run
e Two types of methods to assess the performance of multiobjective
optimisation algorithms
® (Set-)Quality Indicators (e.g., the Hypervolume Indicator)
® Empirical Attainment Function
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(Set-)Quality indicators

® A (set-)quality indicator Z is a function that maps a set of points in the
objective space to a real value

falx)

® Examples:
® The hypervolume indicator 2
® (additive) e-indicator x°
X0

e Performance assessment
® Guide the search process (subset selection view)
® Find a subset of k solutions that maximizes a given quality indicator
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Properties of Quality Indicators

Scaling invariance/independence
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Ar={x},Bi={0}  As={x},B:={e)}

Scaling invariance: Z(A1) = Z(Az) and Z(B1) = Z(B2)
Scaling independence: Z(A1) > Z(B1) = Z(Az) > Z(B2)
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Properties of Quality Indicators

e Optimal p-distributions
® Characterize the indicator-optimal subsets of

size up to u y
fax)

e Characteristics

Existence

Uniqueness

Connection to the Pareto front
Monotonicity with respect to u
Influence of parameters
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Properties of the Hypervolume Indicator

e Scaling independent
® The order defined by the hypervolume indicator is preserved under linear
scaling transformations of the objective space
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Properties of the Hypervolume Indicator

e Scaling independent
® The order defined by the hypervolume indicator is preserved under linear
scaling transformations of the objective space
e Strictly monotonic with respect to (strict) set-dominance (<)
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Properties of the Hypervolume Indicator

e Scaling independent
® The order defined by the hypervolume indicator is preserved under linear
scaling transformations of the objective space
e Strictly monotonic with respect to (strict) set-dominance (<)
® Given two point sets A,B C RY, if A < B then Z(A) > Z(B)
® All solutions in an optimal subset are Pareto-optimal solutions
e Optimal p-distributions
® Ex.. The points in an optimal subset of a two-dimensional continuous linear
Pareto front are evenly spaced
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Empirical Attainment Function

e Allows the distribution of the outcomes of different runs of an
optimisation algorithm to be studied in terms of location
e Example with 3 runs
® All attainment regions

A
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API extension to Multiobjetive Optimisation

Only affects solution evaluation:

objective_value(Solution)

: double[0..1]
objective_value_increment (Move, Solution) : double[0..1]

Considers new abstract types Value and Increment:

objective_value(Solution)

: Value[0..1]
objective_value_increment (Move, Solution) : Increment[O0..1]




API extension to Multiobjetive Optimisation

New type: PreferenceModel
Scalarisations:

scalarisation(PreferenceModel, Value): real

Preference relations:

better_or_indifferent (PreferenceModel, Value, Value): boolean
better (PreferenceModel, Value, Value): boolean

indifferent (PreferenceModel, Value, Value): boolean
incomparable (PreferenceModel, Value, Value): boolean

compare (PreferenceModel, Value, Value):

{Better | Worse | Indifferent}
compare_partial (PreferenceModel, Value, Value):

{Better | Worse | Indifferent | Incomparable}




API extension to Multiobjetive Optimisation

Other non-scalarising approaches

selection(PreferenceModel, Value[O..*], n=None) : int[0..x*]
ranking(PreferenceModel, Value[O..*]) : int[0..x]
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Concluding Remarks

Solving multiobjective optimisation problem poses challenges
® Size of the Pareto front
® Unknown preferences
® Preference modelling
It is important to understand
® The implication of each algorithmic approach

® Biases towards (sets of) solutions
® Guarantees regarding the quality of the outcome set

® The theoretical properties of quality indicators and their implications

Leads to better usage of optimisation algorithms and performance
assessment tools

The API allows to incorporate different models of preferences



Thanks!
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