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Introduction



Introduction

® Algorithm paradigm
® Hill Climbing, Tabu Search, Simulated Annealing, etc. + variations.
® Selective techniques
® Exploration of the search space composed of complete solutions.
® vs. Constructive: Start from an empty solution and build the complete one step by
step.
® Non-exact techniques (also called approximate techniques)
® No guarantee of finding the optimal solution nor proving optimality.
® vs. Exact: Eventually find the proven optimal solution.
I\ Still, it depends on the problem structure



A simple & old idea

® Navigate the search space by stepping from one state (i.e., solution) to one of its
neighbors
® Neighborhood: Set of states you can reach by applying local change to it.
® Local change: Given a state, modify a few of its variables

® First literature dates back 50-60 years ago [Sorensen et al., 2018].



Why still popular?

7 Delivered good results in real-world application and competitions.
® Some examples:

- Integer Linear Programming [Lin et al., 2024]

- Graph Coloring Problem

- Industrial Scheduling

- Employee scheduling [Kletzander et al., 2022, Ceschia et al., 2023a]
- Resource-constrained project scheduling [Mischek et al., 2023]

- Sport timetabling [Rosati et al., 2022]

- Educational timetabling [Ceschia et al., 2023b, Bellio et al., 2021]

- ...and many others ...



Local Search Elements



Key Elements

Three key elements:
1. Search Space
2. Neighborhood Relation
3. Cost Function

How these three elements are connected (e.g., which neighbor solution to select)
depends upon the specific local search technique.

We use the Traveling Salesperson Problem (TSP) as an example.



Traveling Salesperson Problem (TSP)

Problem Definition:
® Given a set of cities and the distances between each pair.
® Find the shortest possible tour that visits each city exactly once and returns to the
starting city.
Formally:
® Let G =(V,E) be a complete graph with vertex set V (cities) and edge weights
w(u, v) (distances).

® Objective: Find a Hamiltonian cycle of minimum total weight.



Traveling Salesperson Problem (TSP)

QV Table: Distance matrix between cities
from| to— |0 1 2 3 4

0 01 2 3 4

1 1 0 2 4 5

2 2 2 0 3 3

3 3 4 3 0 4

4 4 5 3 4 0
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Traveling Salesperson Problem (TSP)

a o Table: Distance matrix between cities

from] to— |0 1 2 3 4

e e 0 01 2 3 4
1 1 0 2 4 5

2 2 2 0 3 3

3 3 4 3 0 4

4 4 5 3 4 0

Total distance = dp1 + dip + dos +dsa +dapo=1+2+3+4+4=14
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Search Space

Given a search or optimization problem P and in instance / of P, we associate to it a
search space S, so that:

® Each element s € S is a solution of | (not necessarily feasible)
® For search problems, at least one feasible solution of / is represented in S

® For optimization problems, at least one optimal solution of / is represented in S

We refer to an element s € S as state.

I\ A state corresponds to a solution of /, however, not all solutions are necessarily
represented by some state in the search space.
We can use the term decision space as a synonym.
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Search Space for the TSP

A direct representation for the TSP is an array of size |V/| of values representing the
nodes. This array defines a permutation of the cities, specifying the order in which
they are visited in the tour. The search space is composed of the set of permutations.

O e 0 1 2 3 4
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Search Space for the TSP

A direct representation for the TSP is an array of size |V/| of values representing the
nodes. This array defines a permutation of the cities, specifying the order in which
they are visited in the tour. The search space is composed by the set of permutations.
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Search Space for the TSP

This is not the only possible representation:

Array of successors: Position /i stores the subsequent node w.r.t. node i

Adjancency matrix: A matrix M where M(i,j) = 1 when we select the path from i
toj

Some representations are more intuitive than others.
Some representations are more efficient than others.

Some representations require further specifications in the neighborhood
relations/in the cost function

Some representations allow easier extensions (e.g., when adding some constraints
or objective function components).
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Search Space and API

® Type SOLUTION

® Data structure defining one candidate solution

Expression of the decision space

Hint: Local search works on complete solution, thus the method VALID() should
consider this
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Neighborhood Relation

Given an instance / of problem P and a search space S for it, we assign to each state
s € S aset N(s) C S of neighboring states of s.

e N(s) is called neighborhood
® Each s’ € N(s) is called neighbor

The set NV/(s) does not need to be listed explicitly; instead, a set of possible moves can
be defined.

® Moves define transitions between states

e A move m is defined by a small set of attributes that describe local modifications
of s

® The state obtained by applying the move m to state s is indicated as s & m

I\ The search space S must be connected under N' — every state s € S can be
reached from any other state s’ € S through a finite sequence of moves m € \/

17



Neighborhood Relation for the TSP

® Following the TSP example, we consider a well-known neighborhood from the
literature — 2-opt.

= Some recent works on the topic include
[Lancia and Vidoni, 2023, da Costa et al., 2021, Eder et al., 2022]
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Neighborhood Relation for the TSP

A 2-opt move removes two edges and reconnects the two paths in the opposite

direction.

ONg o

Before 2-opt After 2-opt
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Neighborhood Relation for the TSP

® When representing the state as a permutation, we could also try generic
neighborhood

® Swap: Take two items in the permutation, and swap them in the permutation.
® |nsert: Take one item, and insert it in another place of the permutation
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Neighborhood Relation

® A large body of literature focuses on showing the effectiveness of some
neighborhoods on various problem domains.

® However, the task of designing efficient and effective neighborhoods for novel
problems is a creative task.
® Two major ways to proceed:

® Select the solution representation Define the neighborhoods by perturbing the
representation.

® Define your neighbors as similar solutions Select the representation so to make
the implementation efficient.
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Neighborhood Relation and API

® Type MOVE: ldentifies the changes between two neighboring solutions
® Method APPLY MOVE(SOLUTION): materializes the changes of a move into a given
solution
® Method OBJECTIVE__VALUE_ INCREMENT (see later)
® Type NEIGHBORHOOD: Defines how to explore the neighborhood
® Method MOVES(SOLUTION): generates all the neighbors of a solution
® Method RANDOM__MOVES__WITHOUT__REPLACEMENT(SOLUTION): generates all
the neighbors of a solution in random order
® Method RANDOM__MOVE(SOLUTION): generates one random solution
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Cost Function

The selection of the move at each step is based on the cost function f

® The cost function f associates at each element s € S a value f(s) assessing the
quality of s

I\ In this presentation, without loss of generality, we assume that f is non-negative
and integer-valued.
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Cost Function

Search Problems
® Normally, f counts the number of constraint violations, i.e., distance to feasibility

Optimization Problems
® Normally, f merges the distance to feasibility (if the search space also considers
non-feasible solutions) and the objective function f of the problem
® The objective is usually a weighted sum, with higher weights assigned to the
distance to feasibility, so as to prefer feasibility over optimality
1. One could also consider different ways of dealing with the cost function other
than aggregation

® In some cases, one could also consider auxiliary components to help guide the
search (like preferring solutions with more balanced composition).
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Cost Function for the TSP

a o Table: Distance matrix between cities

from] to— |0 1 2 3 4

o e 0 01 2 3 4
1 1 0 2 4 5

2 2 2 0 3 3

3 3 4 3 0 4

4 4 5 3 4 0

Total distance = dp1 + dip + dos +dsa +dapo=1+2+3+4+4=14

25



Cost Function and API

® Method OBJECTIVE__VALUE(SOLUTION)
® In the API, it is assumed that the objective function is to be minimized

® Note: Objective-value evaluation is required by all optimization algorithms!
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Delta Cost

When defining a neighborhood, we can compute a delta function (also referred to as
increment):

e Efficiently computes the cost difference between two neighboring solutions
® Avoids full recomputation of the objective function

e Significantly reduces evaluation time
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Delta Cost for the TSP

e Consider the 2-opt move in TSP:
® Removes two edges and reconnects the tour in a different way

® The delta cost can be computed using only the distances of the affected edges

I No need to sum the whole tour again
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Delta Cost for the TSP

o » O\

Before 2-opt After 2-opt
do1 + dio+ doz +dsa+da do1 + dio+ doa+dza+dzo
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Delta Cost and API

® In the API, we refer to the concept of Delta Cost as INCREMENT.

® You need to work with OBJECTIVE__VALUE__ INCREMENT( SOLUTION) within the
MOVE type (class)
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Initial Solution

Local Search techniques are selective techniques, i.e., they work on complete solutions
® How to generate the first solution?

Typical choices are:
® Random Generation

¢ Greedy Constructive Heuristics: Add a new element to the solution each time,
taking the best option possible at that time

® Any other search method

1. While already good solutions allow reaching high-quality solutions in a short time,
the risk is to explore only a limited portion of the search space.

&) However, it depends: do you need a feasible solution? Do you have some hints on
your fitness landscape? etc.
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Initial Solution and API

® You can start from a random solution — you need to implement
RANDOM__SOLUTION(PROBLEM) method

® You can start from any other given solution — E.g.,
ALGORITHM.BEST__IMPROVEMENT(PROBLEM, SOLUTION)
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Move Selection and Move Acceptance

At each step, a single move is selected. This selection depends on the specific local
search strategy.

I. The selection of a move does not imply that the move is accepted and therefore
that the state is changed. The move is subject to an acceptance criterion, also
dependant on the local search strategy.

® Generally, improving moves are accepted

® Sometimes, also worsening moves can be accepted to escape local minima
® State s is a local minimum if f(s) < (s')Vs' € N (s)

33



Fitness and Local Minima

f(s)

Selecting and
accepting only
improving moves

Local minimum

Global minimum
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Stop Criterion

The stop criterion determines when the search is over.
® Natural end

® Stagnation (e.g., best improvement)
® Specific parameters (e.g., final temperature in Simulated Annealing)

Given amount of time (seconds or iterations)
Given amount of time without improvements (stagnation)
® Search trials that are promising paths are let run longer

® Given amount of accepted moves

® Given amount of cost function evaluations (i.e., useful when calculating the cost
function is expensive)

® _..Many others ...
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Stop Criterion and API

At this point in time, the stop criterion is algorithm-based

First improvement and Best improvement: natural end

Simulated Annealing: temperatures + time (in seconds)

Iterated Local Search: time (in seconds)

36



Connecting Elements and Procedure

o At this point, we have all the key ingredients for understanding a Local Search
algorithm.
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Local Search Procedure

Algorithm 1 Abstract Local Search procedure
1. s = InitialState(S)
s =s
while not Stop do
m = SelectMove(s, )
if AcceptableMove(s, m) then
Ss=s&m
if F(s) < F(s*) then
st =s
end if
end if
: end while
: return S*

Qo Na ke

=
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Local Search Techniques

39



From Paradigm to Techniques

We have defined Local Search in a general way.
Specific component implementations depend upon:
® Problem at hand: Initial solution, Neighborhood structure, etc.

® You can recycle the same data structures for different problems (e.g., represent a
solution as a permutation, swap & insert moves)

® Specific Local Search technique: Move selection, Move acceptance, etc.

® The same Local Search technique can have different customization points (e.g.,
Simulated Annealing cooling scheme [Franzin and Stiitzle, 2019])
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Hill Climbing

® Also known as [terative Improvement or Iterative Descent

® Select and accept at each step a move that improves the cost function, never a
worsening one

® Variants: Steepest Descent, First Improvement Descent, Random Descent!

!Note we are alternating names such as Climbing and Descending; however, we are always refering
to minimization problems. 41



Hill Climbing

procedure HillClimbing(SearchSpace S, Neighborhood A/, CostFunction F)

s < InitialStateS
while (not Stop)

m « SelectMove(s, N)

AF <+ F(s® m) — F(s)

if (AF <0)

S<sdm

return s
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Steepest Descent

® Neighborhood exploration: Exhaustive
® Stop criterion: Idle iterations (natural). It stops as soon as it reaches a local
minimum.

I\ Issues
® Exhaustive exploration may require a lot of time
® Exhaustive exploration may raise ties (i.e., solutions in the neighborhood with equal
cost). Usually, one solve ties with a random tie break.
® Trapped in local minimum (by design).
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First-Improving Descent

® Neighborhood exploration: Select the first improving move. Potentially exhaustive.

® Stop criterion: Idle iterations (natural). It stops as soon as it reaches a local
minimum.

I\ lIssues:

® To avoid bias toward some specific attributes, the exploration should start from a
random move and proceed onward in a circular fashion.
® Trapped in local minimum (by design).

44



Random Descent

® Neighborhood exploration: Random moves
® Acceptance criterion: Improving and sideways moves are accepted.

® Stop criterion: Local minima cannot be dected, therefore other criteria should be
used.
I\ lIssues:

® One should design carefully how random moves are selected to ensure uniform
sampling
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Hill Climbing and API

® Steepest Descent

® |n the API, it is referred to as Best Improvement
® You need to implement MOVE()

® First Improvement

® You need to implement RANDOM__MOVES_ WITHOUT _REPLACEMENT()
® Random Descent

® You need to implement RANDOM__MOVE().
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Non-Ascent Techniques

® Descent techniques: accepting only strictly improving moves
¢ Non-ascent techniques: accepting also moves with equal cost (side-ways move)
® Allow to navigate through plateaux, which are areas of the search space with equal

cost
® Ability to reach states from which the cost can be decreased again.

1. You might get stucked between a subset of states!!
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Tabu Search

[

Non-ascent techniques might end up cycling between a subset of states in the
plateau.

Intuition: When humans solve problems they use experience and memory. Try to
do the same in a local search

Forbid visiting recently visited states / moves

® Use a tabu list to store recently visited states / moves

® At every iteration, select and accept the best (non-tabu) move in the neighborhood
of the current state

® Aspiration criterion allows overriding the tabu status

Originally proposed in [Glover, 1986]

For years, it has been the state-of-the-art methodology for several combinatorial
optimization problems.
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Tabu Search: Basic Procedure

procedure TabuSearch(SearchSpace S, Neighborhood A/, CostFunction F, Parameters 6)
s < InitialState(S)
Spest < S
T <+ InitializeTabulList(0)
while (not Stop)
m < SelectMove(s, N)
AF < F(s® m) — F(s)
S<sdm
if (AF <0)
Shest <— S
UpdateTabulList(m)
return Spes
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Tabu Search: Problem-independent Components

In the literature (and summarized in [Glover and Laguna, 1997]), there has been
several proposals for the TS components.

® Tabu List Management: Fixed-length, Random bounded length, Reactive,
Transition measure, etc.

® Tabu List Item: Move (attributes), States [Danielsen and Hvattum, 2025]
® Aspiration Criterion: By default, By objective, By search direction, etc.
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Tabu Search: Tabu List

Remember all states encountered so far (strict Tabu Search)

Remember the last j states encountered so far

Remember the last j moves that have been performed
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Tabu Search: Tabu Tenure

® Number of iterations that a state/move/attribute is tabu
® May be static or dynamic

® Static: Easy to implement; fixed number of iterations, random number of iterations,
etc.
® Dynamic: Vary according to the search history. E.g., based on idle iterations.
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Tabu Search: Aspiration Criterion

Condition to override the tabu status; i.e., accept a move even though it is labeled
as tabu

Global best: New best solution is found

Region best: Best among the neighboring ones

Recent best: Best among the recently visited ones
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Simulated Annealing

I\ Acceptance of worsening moves with a given probability to escape local minima

® The probability is set through a specific parameter, called Temperature

® The temperature decreases over time in the search, so as to allow balance in
exploring/exploiting different parts of the search space (There exist different
formulations, we will see this later)

7" We are going to spend some time analyzing Simulated Annealing, as it was a
winning local search in many situations (e.g., ICT competition of 2021
[Rosati et al., 2022])
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Simulated Annealing: History & References

4% The name of the algorithm comes from annealing in metallurgy, a technique
involving heating and controlled cooling of a material to alter its physical properties.
® QOriginal Papers:
- Kirkpatrick, Gelatt, & Vecchi (1983). Optimization by simulated annealing. Science,
220(4598), 671-680.

- Cerny (1985). Thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm. Journal of optimization theory and applications, 45(1), 41-51.

® Seminal Books:

- Van Laarhoven, & Aarts (1987). Simulated annealing: Theory and applications. Kluwer
Academic Publisher.
- Aarts & Korst (1989). Simulated annealing and Boltzmann machines. John Wiley & Sons.

® ~ 9,700 papers on Scopus with Simulated Annealing in the title (May 2025)
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Simulated Annealing: Basic Procedure

procedure SimulatedAnnealing(SearchSpace S,Neighborhood N, CostFunction F, Parameters To, T¢, o, Ns)
T « To
s < InitialState(S)
Shest <~ S
while (T > Ty)
n<+20
while (n < Ns)
m + RandomMove(s, )
AF « F(s® m) — F(s)
if (AF <0)
S s®m
if (F(s) < F(Spest))
Shest <— S
else
if (RandomReal(0,1) < e=2F/T)
S<s®m
n<n+1
T+ T «
return Speqr
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Simulated Annealing: Problem-independent Components™.

[Franzin and Stiitzle, 2019] recently surveyed different problem-independent
components for SA.

Initial Temperature (8 options): Fixed value, Proportional to initial solution
cost, Maximum gap in a random walk, etc.

Stopping Criterion (9 options): Maximum time, Maximum moves, Minimum
temperature, etc.

Temperature Restart (16 options): Never, Number of moves, Minimum
temperature, etc.

Exploration Criterion (4 options): Random, Sequential, etc.
Acceptance Criterion (9 options): Metropolis, Geometric, etc.
Cooling Scheme (11 options): Geometric, Logarithmic, etc.

Temperature Scheme (9 options): Fixed number of moves, Number of moves
proportional to the problem size, etc.
57



Simulated Annealing: Problem-independent Components™

[Franzin and Stitzle, 2019] recently surveyed different problem-independent
components for SA.

® Large number of possible configurations
® Each configuration comes with parameters (to tune)

® Most important components are: Exploration and Acceptance Criterion (based on
empirical evidence by [Franzin and Stiitzle, 2019])

® Hard to draw conclusions across different problems and datasets

® Same reflections are valid for what we observed with TS
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Iterated Local Search

I\ Local Search algorithms may be stucked in a local minimum.

® A simple way to deal with this is to iterate the calls to the Local Search routine
from a different initial configuration

® That is, you start from a sliglthy different solution w.r.t. the local optimum where
the previous method did stopped

== Introduced by [Lourenco et al., 2010]

59



Iterated Local Search: Some Notes

1. One should pay attention to the perturbation component:

® |f too strong: the risk is to start from a random solution
® |f too weak: the risk is to not be able to escape from the local minimum in which
you are trapped
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Other Aspects



Neighborhoods

I. Sometimes navigating the search space with one neighborhood is not enough
- Local optima, plateaus, basins of attraction, etc.

® A viable solution is to employ multi-neighborhoods.

® Given K neighborhoods, where each neighborhood k € J is indicate as N, the
related union neighborhood Ny is defined as follows:

K
Ny = | M

k=1

? Why to use more than one neighborhood?
- A local optimum, plateau, or basin of attraction of one neighborhood is not
necessarily a local optimum, plateau, or basin of attraction for another one.
- They enhance the connectivity of the search space
- Robustness of the search method to the features of the instance (and of the related
landscape)

= Multi-neighborhoods have been largely analyzed by [Rosati, 2024]
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Neighborhoods

Figure: Multi-neighbohoods representation [Rosati, 2024].

® If an edge connects states s; and s;, it means there is a neighborhood connecting them
(distinguished by color).

® Only blue neighborhood connects completely these search space.

® The green neighborhood is constrained by the choice of the initial solution

® For instance from sy, one cannot reach sy, 19, 21, and Spg o



Parameters and Parameter Tuning

® Both Tabu Search and Simulated Annealing are based on a set of parameters
(e.g., tabu length, initial temperature, final temperature)

® Historically, parameters were manually set on the basis of a trial-and-error
approach

® Also golden parameters have been proposed in the years, e.g., tabu list of size 7.

® Currently, automated tools are preferred such as irace [Lopez-Ibafiez et al., 2016]
or SMAC3 [Lindauer et al., 2022]

® Some studies have investigated ways of adapting parameter values during the
search [Maximo et al., 2025]

® Programming by Optimization (PbO): Expose as many design choice as possible
[Hoos, 2012]
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Local Search & ROAR-NET API

First and Best Improvements

Simulated Annealing

Random Descent

Iterated Local Search

You will recap Tabu Search with Alberto Moraglio in the next days.
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Conclusion
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Conclusion

Local Search Elements: Search Space, Neighborhood, Cost Function

Local Search Techniques: How do the elements interact

Other aspects: Multi-neighborhood, Tuning
What to do with your API
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