# ROAR-NET Cost Action CA22137 First Training School



Integrating Passenger Transport and Parcel Deliveries:
An example of Share-a-Ride problem in Luxembourg

D. H. Stolfi, W. Mtalaa



#### **AGENDA**



- Research at LIST
- Last Mile Delivery overview
- Combining Passenger and Parcel Transport
- Description of the Problem
- Mathematical Model
- Algorithms Developed
- Numerical Experiments
- Conclusion and Perspectives

#### THE LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY A REFERENCE IN RESEARCH AND INNOVATION FOR A DIGITALIZED, RESILIENT & SUSTAINABLE SOCIETY







#### **HUMAN RESOURCES**

+

Q

口

a

756 employees

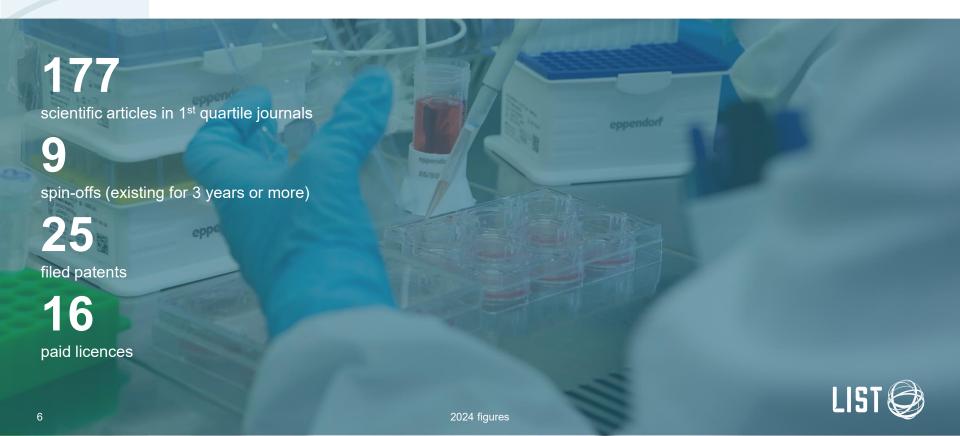
**34%** women

**61** nationalities

114
people recruited

researchers or Innovation experts

78%


83

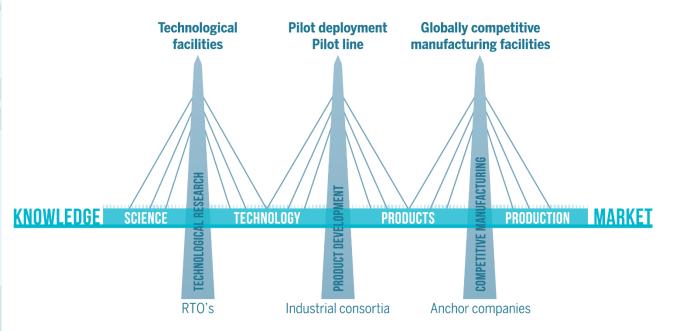
PhD students hosted



#### **SCIENCE AND TRANSFER IN 2024**



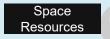


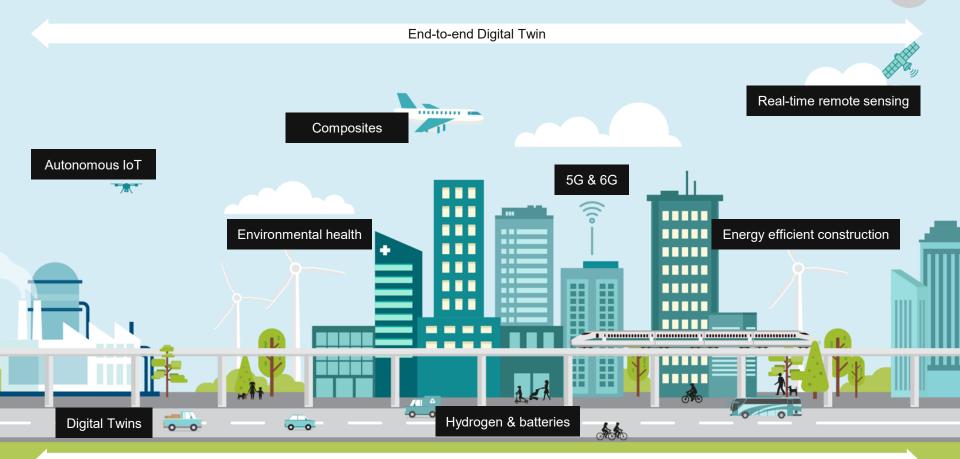



# 4 AREAS OF RESEARCH EXCELLENCE

#### Working across the entire innovation chain

- Fundamental & applied research
- Incubation & transfer of technologies
- Policy support
- Doctoral & post-doctoral training


### BUILDING A BRIDGE BETWEEN LUXEMBOURG RESEARCH AND SUIL SINE




#### **Technology Readiness Level (TRLs)**



#### **DIGITALISATION AND SUSTAINABILITY: 12 LIST CORE TECHNOLOGIES**





## LIST INFORMATICS



Responsible
Data Science
& Analytics



Reliable Distributed Systems



Software Engineering RDI



AIDA Lab









### Al & Data Analytics

- Data science
- Al prototyping
- Software development
- Research data management
- Infrastructure provision





## **5 PARTNERSHIP MODELS**

A solution for every problem





#### **LIST VENTURES**

LIST's Tech Venture Builder and Start-up / Industry Cooperation

### LIST Entrepreneurs

Are you a researcher at LIST planning to set up a company?

#### LIST Researchers

Are you a researcher at LIST with an interest in entrepreneurship?

### Startups & Entrepreneurs

Are you a Startup looking for a tecnological partner?

### Entrepreneurial Corporations

Are you a company interested in launching new businesses?

#### Investors

Are you an investor looking for technological deep moat investments?

#### THANKS TO





LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG Ministère de l'Agriculture, de la Viticulture et du Développement rural







LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG Ministère des Affaires étrangères et européennes

RESEARCH **● LUXEMBOURG** 





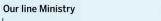




LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG Ministère de la Digitalisation

DU GRAND-DUCHÉ DE LUXEMBOURG Ministère de l'Environnement, du Climat et du Développement durable

Direction de la Défense

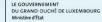

LE GOUVERNEMENT














LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG Ministère de l'Enseignement supérieur et de la Recherche







Service des médias et des communications



LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG Ministère de la Mobilité et des Travaux publics

Administration des ponts et chaussées



LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG Ministère de la Santé









































#### THANKS TO















































































































































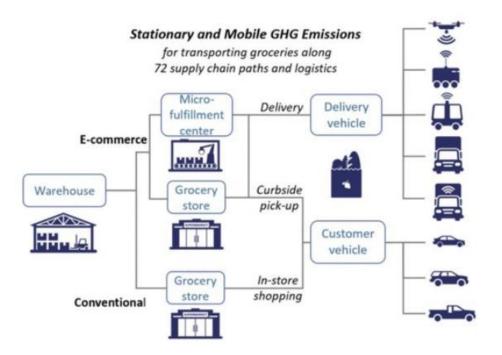


#### LAST MILE DELIVERY OVERVIEW



#### Final leg of the logistics chain, from hub to consumer




- •Key issues: High costs, traffic congestion, delivery delays
- •Growing demand from e-commerce and food delivery

#### LAST MILE DELIVERY OVERVIEW



#### The majority of households are unoccupied during the postal delivery times

- Failed deliveries increase the CO2 emissions
- Light duty vehicles
- Electric tricycles
- Drones
- Public transport



#### COMBINING PASSENGER AND PARCEL TRANSPORT



#### **Challenges of Integration**

- Operational complexity (routing, timing, space constraints)
- Safety and privacy concerns for passengers
- Legal and insurance hurdles
- Balancing delivery efficiency with passenger satisfaction

#### **Opportunity**

Shared infrastructure for transporting goods and people

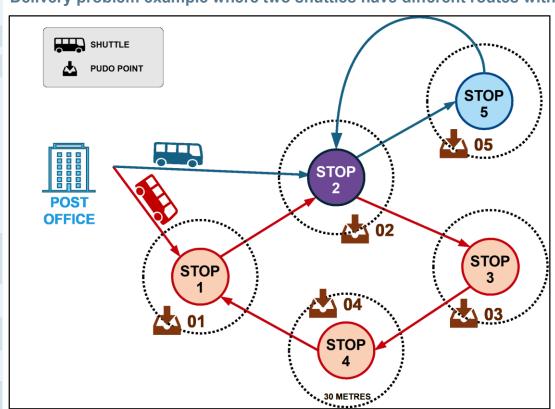
#### COMBINING PASSENGER AND PARCEL TRANSPORT



- Routing problems
- Lockers
- Delivery by personal cars (light duty vehicles)
- Use of drones/ robots/ public transportation
- Multi-purpose vehicle design (modular seating/storage)
- Al for dynamic routing and load management
- Digital twins and simulation for urban mobility planning
- Policy frameworks supporting multi-use transport



#### **Autonomous shuttles**




Pack up stations





Delivery problem example where two shuttles have different routes with one common stop.





#### **Entities and Notations**

```
 \begin{split} &\{SHUTTLE_1, \ldots, SHUTTLE_N\}, \\ &STOPS_i = \{st_{i,1}, st_{i,2}, \ldots, st_{i,s}\} \\ &B_i = \{b_{i,1}, b_{i,2}, \ldots, b_{i,M}\} \\ &Maximum \ capacity \ of \ a \ Basket \ (H_j) \\ &SPACE_i = \{sp_{i,1}, sp_{i,2}, \ldots, sp_{i,s}\}, \\ &shuttle's \ capacity \ S_i, sp_{i,s} \leq S_i \end{split}
```

x<sub>i,j,k</sub> indicates if the parcel p<sub>i,j,k</sub> is included into the delivery batch where i is the shuttle, j is the basket, and k is the parcel's position in the basket

#### MATHEMATICAL MODEL



Maximise:

$$f = \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{k=1}^{K_{i,j}} [p_{i,j,k} \times x_{i,j,k}]$$
 (1)

Subject to:

$$\sum_{k=1}^{K_{i,j}} h(p_{i,j,k}) \le H_j \tag{2}$$

$$Stop(p_{i,j,k}) \in STOPS_i$$
 (3)

 $|STOPS_i|$ 

$$\sum_{st-k} |b_{i,st}| \le sp_{i,k}, \ k = \{1, 2, \dots, |STOPS_i|\}$$
 (4)

Where:

$$p_{i,j,k} = \begin{cases} 1, & \text{if } p_{i,j,k} \in P_T \\ |P_T| + 1, & \text{if } p_{i,j,k} \in P_{SD} \end{cases}$$
 (5)

$$x_{i,j,k} \in \{0,1\}$$
 (6)



#### Maximize the number of parcels delivered

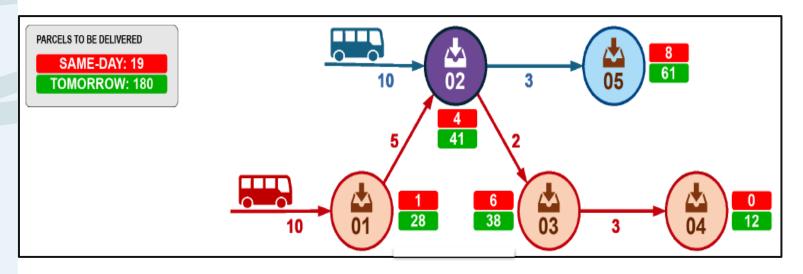
#### **Problem**

Number of stops

Number of parcels to be delivered the :

- Same day
- Tomorrow

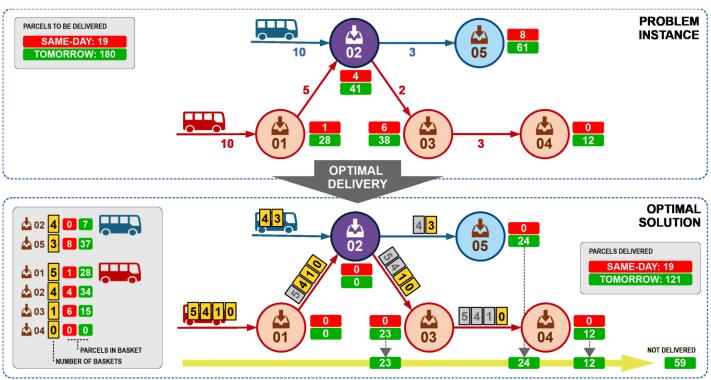
#### Request


Delivery location = PUDO points Load

#### **Constraints**

Capacity
Priority to same day parcels

#### **PROBLEM INSTANCE**

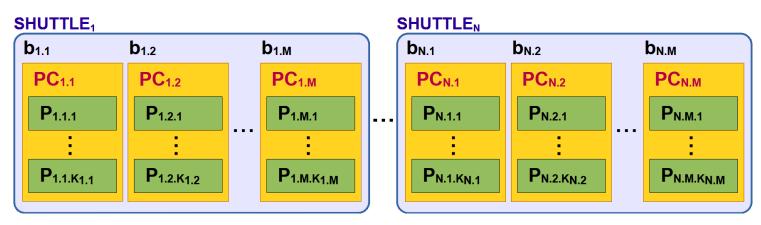





The objective is to maximise the number of parcels delivered the "same-day"

#### PROBLEM AND SOLUTION REPRESENTATION






A possible optimal solution with detailed delivery plan and results.

#### SHARE-A-RIDE PROBLEM



#### Representation of a solution



- N shuttles having up to M baskets.
- Each basket has K parcels to be delivered at the stop having the postal code PC.

#### SHARE-A-RIDE PROBLEM



#### Representation of a solution

```
\begin{split} \vec{x} &= \{shuttle_1, \dots, shuttle_i, \dots, shuttle_N\} \\ shuttle_i &= \{basket_{i,1}, \dots, basket_{i,j}, \dots, basket_{i,M}\} \\ basket_{i,j} &= \{p_{i,j,1}, \dots, p_{i,j,k}, \dots, p_{i,j,K_{i,j}}\} \\ basket_{i_j} &\in STOPS_i \\ p_{i,j,k} &\in PARCELS \end{split}
```

#### MATHEMATICAL MODEL



#### Minimisation problem

$$F(\vec{x}) = \Phi R_{SD} + R_T + \xi \tag{12}$$

$$\Phi = |P_{SD}| + 1 \tag{13}$$

$$R_{SD} = |P_{SD}| - |P_{SD}^{\star}| \tag{14}$$

$$R_T = |P_T| - |P_T^*| \tag{15}$$

$$\xi = \begin{cases} \Phi \times |P_{SD}|, & \text{if } \vec{x} \text{ is not viable} \\ 0, & \text{otherwise} \end{cases}$$
 (16)

 $|P_{SD}^{\star}|$  is the number of parcels actually delivered by the proposed solution

#### **ALGORITHMS DEVELOPED**



- Greedy algorithm (GR)
- Genetic Algorithm (GA)
- Random Search as a way to assess the validity of the GA and GR

#### **ALGORITHMS DEVELOPED**

Pseudocode of the Greedy Algorithm (GR)

```
GR()
P_{SD} \leftarrow Sort(parcels, same-day)
P_T \leftarrow Sort(parcels, tomorrow)
sol \leftarrow EmptySolution()
{First: add "same-day" parcels}
for all shuttle in sol do
  for all stop in Stops(shuttle) do
     for all p in P_{SD} do
       if Stop(p) = stop then
          if Fits(baskets(shuttle), p) then
             basket \leftarrow basket \cup \{p\}  {add to basket}
          else if Viable(sol, new\_basket) then
             sol[shuttle][new\_basket] \leftarrow \{p\} \{new\}
 Second: complete with "tomorrow" parcels}
for all shuttle in sol do
   for all basket in shuttle do
     for all p in P_T do
       if Stop(p) = Stop(shuttle) then
          if Fits(basket, p) then
            basket \leftarrow basket \cup \{p\}
 Finally, add new baskets for "tomorrow" if possible}
for all shuttle in sol do
  for all stop in Stops(shuttle) do
     while Viable(sol, new basket) do
       for all p in P_T do
          if Stop(p) = stop then
             if Fits(new\_basket, p) then
               new\ basket \leftarrow new\ basket \cup \{p\}
return sol
```



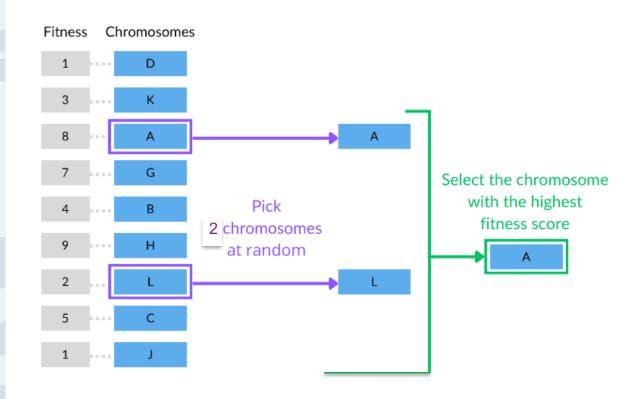
# ALGORITHMS DEVELOPED Genetic algorithm



#### Pseudocode of the Genetic Algorithm (GA)

```
GA(n_i, p_c, p_m)
t \leftarrow 0; n_{ev} \leftarrow 0
Q(0) \leftarrow \emptyset {Q=auxiliary population}
P(0) \leftarrow Initialisation(n_i) \{ \text{Pop=population} \}
while n_{ev} < MAX\_EVALUATIONS do
  Q(t) \leftarrow Selection(P(t))
  Q(t) \leftarrow Crossover(Q(t), p_c)
  Q(t) \leftarrow Mutation(Q(t), p_m)
  Evaluation(Q(t))
   P(t+1) \leftarrow Replacement(Q(t), P(t))
  t \leftarrow t + 1
return Best(P)
```

# ALGORITHMS DEVELOPED Genetic algorithm\_Selection operator




- In a **binary tournament**, two individuals are randomly selected, and the one with the best fitness is chosen.
- **Simplicity:** It's a simple and computationally inexpensive selection method.
- **Commonly Used:** Binary tournament selection is a frequently used technique in genetic algorithms due to its balance of efficiency and effectiveness.
- Larger tournaments tend to favor fitter individuals, leading to faster convergence but potentially reduced diversity.
- This process is repeated until a new population of the desired size is created

#### **ALGORITHMS DEVELOPED**



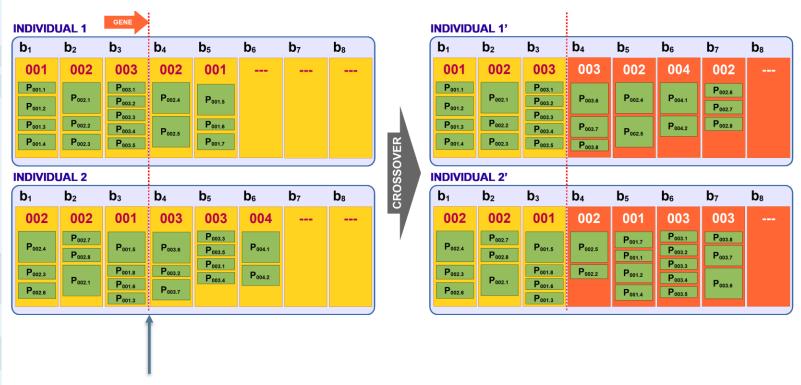
#### **Genetic algorithm\_Binary Tournament**



# ALGORITHMS DEVELOPED Genetic algorithm\_Crossover operator



#### Pseudocode of the Crossover


```
Crossover(ind_1, ind_2, cross\_point)
qene \leftarrow 0
for all sh_1, sh_2 in ind_1, ind_2 do
  for all basket_1, basket_2 in sh_1, sh_2 do
     if qene < cross point then
        of f_1[sh_1][basket_1] \leftarrow ind_1[sh_1][basket_1]
        of f_2[sh_2][basket_2] \leftarrow ind_2[sh_2][basket_2]
     else
        if basket_2 \neq \emptyset and Viable(off_1, basket_2) then
           of f_1[sh_1][basket_1] \leftarrow ind_2[sh_2][basket_2]
        else
           of f_1[sh_1][basket_1] \leftarrow \emptyset {if invalid}
        if basket_1 \neq \emptyset and Viable(off_2, basket_1) then
           of f_2[sh_2][basket_2] \leftarrow ind_1[sh_1][basket_1]
        else
           of f_2[sh_2][basket_2] \leftarrow \emptyset {if invalid}
     gene \leftarrow gene + 1
of f_1 \leftarrow RemoveDuplicatesAndComplete(of f_1)
```

 $off_1 \leftarrow RemoveDuplicatesAndComplete(off_1)$   $off_2 \leftarrow RemoveDuplicatesAndComplete(off_2)$ **return**  $off_1, off_2$ 

## **ALGORITHMS DEVELOPED**



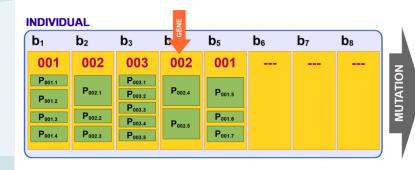
# **Genetic algorithm\_Crossover operator**

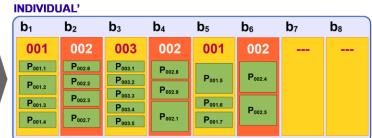


Cut point located at the third gene

# ALGORITHMS DEVELOPED Genetic algorithm\_Mutation operator




## Pseudocode of the Mutation


```
Mutation(ind, gene)
pc \leftarrow PostalCode(ind, gene)
for all shuttle in ind do
  for all basket in shuttle do
     if PostalCode(basket) = pc then
       basket \leftarrow \emptyset {All baskets for pc are emptied}
parcels \leftarrow GetParcels(pc) {All parcels for pc}
found \leftarrow \mathbf{false}
for all p in parcels do {Assign parcels (sorted)}
  shuttle \leftarrow RandShuttle(pc)
  for all basket in RandBasket(shuttle, pc) do
     if Fits(basket, p) then {there is space}
        basket \leftarrow basket \cup \{p\}
        found \leftarrow true
        break
  if not found then {parcel was not added}
     for all basket in RandBasket(shuttle, pc) do
        if basket = \emptyset then
          if Viable(ind, basket) then
             ind[shuttle][basket] \leftarrow \{p\}  {new basket}
             break
return ind
```

# **ALGORITHMS DEVELOPED**



# **Genetic algorithm\_Mutation operator**





## **ALGORITHMS DEVELOPED**



## Pseudocode of the Random search

## Pseudocode of Random Search(RS)

```
\begin{aligned} & \mathbf{RS}() \\ & best\_sol \leftarrow \emptyset; \quad min\_f \leftarrow 0; \quad n_{ev} \leftarrow 0 \\ & \mathbf{repeat} \\ & sol \leftarrow RandomSolution() \\ & f \leftarrow Evaluate(sol) \\ & \mathbf{if} \ f \leq min\_f \ \mathbf{then} \\ & best\_sol \leftarrow sol; \quad min\_f \leftarrow f \\ & n_{ev} \leftarrow n_{ev} + 1 \\ & \mathbf{until} \ n_{ev} = MAX\_EVALUATIONS \\ & \mathbf{return} \ best\_sol \end{aligned}
```

#### **Problem instances**



#### **Characteristics of each case study**

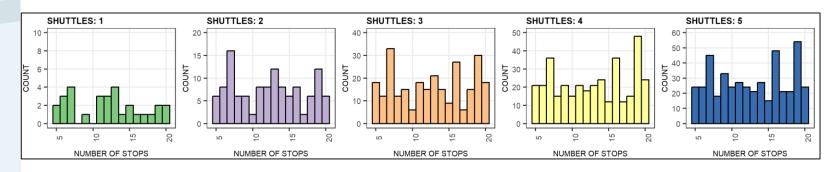
| # shuttles | # instances  | # shared | # parcels |           |  |  |
|------------|--------------|----------|-----------|-----------|--|--|
| # shuttles | # Histalices | stops    | Same-Day  | Tomorrow  |  |  |
| 1          | 30           | 0        | 18 - 40   | 146 – 193 |  |  |
| 2          | 60           | 0,1      | 17 - 39   | 146 – 194 |  |  |
| 3          | 90           | 0,1,2    | 18 - 47   | 149 – 189 |  |  |
| 4          | 90           | 0,1,2    | 17 - 43   | 155 – 198 |  |  |
| 5          | 90           | 0,1,2    | 16 – 45   | 152 – 190 |  |  |

- 360 problem instances in total,30 for one-shuttle scenarios, 60 for two shuttles, and 90 for the rest.
- Each group of 30 instances corresponds to the number of shared stops, i.e. 0, 1, and 2,
- The range of the number parcels was calculated by using a uniform probability distribution
- The number of empty spaces (0 14) and parcels' height (1 50 cm) are common to all case studies.
- The rest of parameters are:
  - basket capacity (Hi = 100 cm, ∀i),
  - shuttle capacity (Si = 14, ∀i),
  - Number of stops  $(5 \le |STOPSi| \le 20)$ .
  - The maximum number of baskets per shuttle (M) corresponds to the shuttle capacity, i.e. M = 14.

#### **Problem instances**



#### Hyperparameters of the GA calculated by IRACE


| # shuttles     | 1      | 2      | 3      | 4      | 5      |
|----------------|--------|--------|--------|--------|--------|
| Pc             | 0.6000 | 0.9444 | 0.7442 | 0.6233 | 0.8388 |
| P <sub>m</sub> | 0.1867 | 0.1010 | 0.1492 | 0.1615 | 0.1910 |

- Irace is an implementation of the iterated racing procedure which uses Friedman's nonparametric two-way analysis of variance by ranks
- maximum number of evaluations : 10,000
- Number of individuals: 400 according to the observed algorithm's convergence.
- crossover probability Pc and mutation probability Pm, calculated by performing 2000 experiments per case study with a confidence interval for the elimination test of 0.95.

#### **Problem instances**

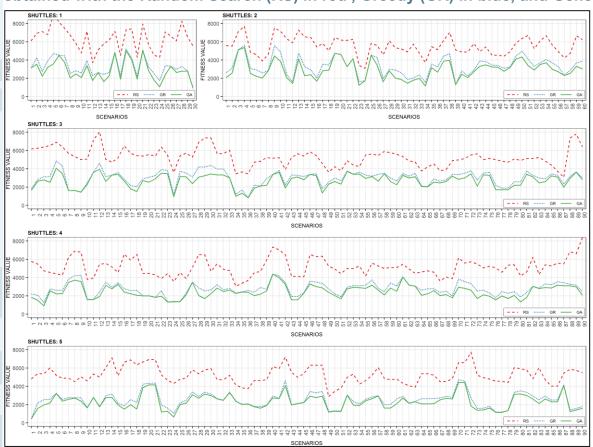


#### Histograms with number of stops, randomly calculated, used in the scenarios of each case study





#### Results for the 360 scenarios, best fitness and run time values for 30 runs of RS and GA (GR is one run)


|            |             | RS      |          | GR      |          | GA      |          | Improvements |           |        |           |       |       |
|------------|-------------|---------|----------|---------|----------|---------|----------|--------------|-----------|--------|-----------|-------|-------|
| # shuttles | # scenarios | Avg.    | Avg.     | Avg.    | Avg.     | Avg.    | Avg.     |              | GA vs. RS |        | GA vs. GR |       |       |
|            |             | fitness | time (s) | fitness | time (s) | fitness | time (s) | Min.         | Avg.      | Max.   | Min.      | Avg.  | Max.  |
| 1          | 30          | 6338.1  | 20.0     | 3262.6  | 0.001    | 2853.5  | 39.9     | 45.4%        | 146.4%    | 503.4% | 0.2%      | 17.7% | 62.4% |
| 2          | 60          | 5938.5  | 22.8     | 3339.3  | 0.002    | 2927.6  | 68.4     | 35.9%        | 128.4%    | 340.0% | 0.2%      | 17.7% | 44.0% |
| 3          | 90          | 5556.5  | 25.1     | 3017.6  | 0.002    | 2693.2  | 69.9     | 48.2%        | 146.9%    | 293.2% | 0.2%      | 15.0% | 36.4% |
| 4          | 90          | 5305.3  | 26.7     | 2758.0  | 0.002    | 2429.6  | 70.4     | 45.5%        | 157.5%    | 426.3% | 1.0%      | 15.1% | 48.5% |
| 5          | 90          | 5310.5  | 28.2     | 2541.7  | 0.002    | 1633.3  | 69.7     | 66.6%        | 197.4%    | 989.1% | 0.8%      | 16.3% | 61.7% |

### Total number of parcels to be delivered by case study and solutions obtained by each optimization algorithm

|  | # shuttles | # scenarios | Parcels  |          |           | GR       |               | GA        |          |               |  |
|--|------------|-------------|----------|----------|-----------|----------|---------------|-----------|----------|---------------|--|
|  |            |             |          |          | Delivered |          | Not delivered | Delivered |          | Not delivered |  |
|  |            |             | Same-Day | Tomorrow | Same-Day  | Tomorrow | by shuttles   | Same-Day  | Tomorrow | by shuttles   |  |
|  | 1          | 30          | 862      | 5069     | 316       | 469      | 5146 (86.8%)  | 386       | 891      | 4654 (78.5%)  |  |
|  | 2          | 60          | 1749     | 10290    | 635       | 1230     | 10174 (84.5%) | 773       | 2280     | 8986 (74.6%)  |  |
|  | 3          | 90          | 2682     | 15321    | 1169      | 2196     | 14638 (81.3%) | 1330      | 4016     | 12657 (70.3%) |  |
|  | 4          | 90          | 2653     | 15410    | 1283      | 2160     | 14620 (80.9%) | 1443      | 4355     | 12265 (67.9%) |  |
|  | 5          | 90          | 2746     | 15318    | 1478      | 2389     | 14197 (78.6%) | 1589      | 4878     | 11597 (64.2%) |  |

LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY

Comparison of the best fitness values for the 360 scenarios,
obtained with the Random Search (RS) in red , Greedy (GR) in blue, and Genetic Algorithm (GA) in green.



## CONCLUSION



- Design of two algorithms for last mile parcel delivery using mobility services.
- Greedy algorithm rapidly finds good solutions (hundredths of second)
- Genetic algorithm improves the quality of the solutions but slower
- Adoption of the solution would:
  - reduce the delivery costs
  - improve the road traffic conditions (jams and greenhouse gas emissions)





- Real tests in Belval and other places
- Real passenger and logistics data
- Explore other operators/ local search algorithms that would be more efficient.
- Hybridise a local search with an evolutionary schema
- Increase convergence of mobility and logistics platforms
- Increase integrated collaboration between public and private agencies

## REFERENCES



- A. Adibfar, S. Gulhare, S. Srinivasan, and A. Costin, "Analysis and modeling of changes in online shopping behavior due to covid-19 pandemic: A florida case study," Transport Policy, vol. 126, pp. 162–176, 2022.
- V. Gatta, E. Marcucci, M. Nigro, and S. Serafini, "Sustainable urban freight transport adopting public transport-based crowdshipping for b2c deliveries," European Transport Research Review, vol. 11, no. 1, p. 13, 2019
- I. Orenstein, T. Raviv, and E. Sadan, "Flexible parcel delivery to automated parcel lockers: models, solution methods and analysis," EURO Journal on Transportation and Logistics, vol. 8, no. 5, pp. 683–711, 2019.
- R. Masson, A. Trentini, F. Lehuédé, N. Malhéné, O. Péton, and H. Tlahig, "Optimization of a city logistics transportation system with mixed passengers and goods," EURO Journal on Transportation and Logistics, vol. 6, no. 1, pp. 81–109, 2017.
- Y. Vakulenko, D. Hellström, and K. Hjort, "What's in the parcel locker? exploring customer value in e-commerce last mile delivery," Journal of Business Research, vol. 88, pp. 421–427, 2018.
- E. Chaalal, C. Guerlain, E. Pardo, and S. Faye, "Integrating connected and automated shuttles with other mobility systems: Challenges and future directions," IEEE Access, vol. 11, pp. 83 081–83 106, 2023. F. Cavallaro and S. Nocera, "Integration of passenger and freight transport: A concept-centric literature review," Research in Transportation Business & Management, vol. 43, p. 100718, 2022.

# **QUESTIONS?**





## **Contact:**

wassila.mtalaa@list.lu daniel.stolfi@list.lu

# **Acknowledgements:**



