COST ACTION CA22137 2023-2027

\>\'R\ Distance-Based
09 7 Search Operators

Alberto Moraglio
University of Exeter, UK
a.moraglio@exeter.ac.uk

ocoskE

EUROPEAN COOPERATION
IN SCIENCE & TECHNOLOGY

COST ACTION CA22137 2023-2027

Instructor Information

Dr. Alberto Moraglio is a Senior Lecturer in Computer Science

at the University of Exeter, UK. He is the founder of the

Geometric Theory of Evolutionary Algorithms, which unifies

Evolutionary Algorithms across representations and has been

used for the principled design of new successful search

algorithms and for their rigorous theoretical analysis. He has

been active in Evolutionary Computation research for the last 2

decades with a substantial publication record in the area.
SaN
o Z

Sl

COST ACTION CA22137 2023-2027

Learning Objectives

By the end of this lecture, you will:

 Understand how distance metrics unify search operators
across representations

« Connect evolutionary algorithms to neighborhood search and
local search

 Apply geometric interpretations to tabu search

 Understand the distance-based API for practical
optimization problems

P P OS/)P\R\Z
Sa

COST ACTION CA22137 2023-2027

Part |: Distance-Based Evolutionary Algorithms

g,
Sl

COST ACTION CA22137 2023-2027

What are Evolutionary Algorithms?

Definition: Optimization algorithms inspired by biological evolution

Biological Inspiration:
* Population of candidate solutions (individuals)
« Variation through crossover and mutation
» Selection pressure favors fitter individuals
« Evolution over multiple generations
PN

Key Insight: Good solutions can be evolved rather than calculated & Z

Sl

COST ACTION CA22137 2023-2027

Evolutionary Algorithm Flavours

Many instantiations exist:

* Genetic Algorithms (GA)

« Evolution Strategies (ES)

* Genetic Programming (GP)

« Evolutionary Programming (EP)

Key insight: They differ substantially only in:

« Underlying representation (binary, real, permutations, trees) nR

« Search operators (mutation, crossover) 09 \Z
ISh

Same algorithmic structure: selection — variation — replacement

COST ACTION CA22137 2023-2027

Question: Can We Unify These Approaches?

Challenge:
» Each representation seems to need its own "special” operators

« Binary strings # Real vectors # Permutations
« Different operators seem completely unrelated

Today's answer: Yes! Through distance-based operators

COST ACTION CA22137 2023-2027

Concrete Examples: Binary Strings

Representation: [1,0,1,1,0,0, 1, O]
Mutation Operations:

« Bit-flip: Randomly flip bits
 Example: [1,0,1,1,0,0,1,0] — [1,0,0,1,0,0,1,0]

COST ACTION CA22137 2023-2027

Crossover Operators: Binary Strings

One-point crossover: Uniform crossover:
Parent 1: [1,0,1,1,0,0,1,0] parent 1: [1,0,1,1,0,0,1,0]
Parent 2: [0,1,0,0,1,1,0,1] Parent 2: [0,1,0,0,1,1,0,1]
| (cut point) Mask: 1,0,1,0,1,0,1,0]
(random)
offspring:[1,0,1,1,1,1,0,1] offspring:[1,1,1,0,0,1,1,1]

g,
&7

COST ACTION CA22137 2023-2027

Concrete Examples: Real Vectors

Representation: [2.5, -1.3, 0.8, 4.2]

Mutation Operations:
« Gaussian perturbation: Add random noise
« Example: [2.5,-1.3,0.8,4.2] —» [2.7,-1.1, 0.9, 4.0]

Crossover Operations:
« Arithmetic recombination: offspring = a-parentl + (1-a)-parent2 nR
« Discrete recombination: Inherit each component from either 09 \Z

parent (like uniform crossover) IS

COST ACTION CA22137 2023-2027

Concrete Examples: Permutations

Representation: [3, 1, 4, 2, 5] (e.qg., TSP tour)

Swap mutation:
original: [3,1,4,2,5]
Mutated: [3,2,4,1,5] (swap positions 1 and 3)

Insertion mutation:
original: [3,1,4,2,5]

J _ - - . PxR\
Step 1: 3,1,_,2,5] (remove 4 from position 2) O
Step 2: 3,1,2,5,4] (insert 4 at position 4) x Z@T

COST ACTION CA22137 2023-2027

Crossover Operators: Permutations

Order Crossover (OX): Cycle Crossover:

Parent 1: [3,1,4,2,5 Parent 1: [3,1,4,2,5]
Parent 2: [2,5,1,3,4] Parent 2: [2,5,1,3,4]

Step 1: _,_,4,2,5] Cycle 1: 3—2-3

(substring from P1) Cycle 2: 155—4—-1

Step 2: [1,3,4,2,5] Offspring: [3,5,1,2,4]

(fi11 from P2 1'n order) (take P1 for cycle 1, P2 for cycle 2)

PR\

COST ACTION CA22137 2023-2027

Observation

Each representation has its own "special” operators

Questions:

« Are these really fundamentally different?

 Is there a deeper unifying principle?

« Can we define operators that work across representations?

Next: The geometric answer...

COST ACTION CA22137 2023-2027

Geometric Unification via Distance Metrics

The Unifying Framework:

« Geometric Mutation: offspring € ball(parent, radius) (near)
« Geometric Crossover: offspring € segment(parentl, parent2) (between)

Formal definitions for any distance d:

« Ball: ball(center, radius) = {x | d(center, x) < radius}
« Segment: segment(a, b) = {x | d(a, x) + d(x, b) = d(a, b)} R
SN

Key insight: Same geometric principles, different distance metrics &7

COST ACTION CA22137 2023-2027

Geometric Operators: Real Vectors

Distance metric: Euclidean distance

Geometric Mutation:
 ball(parent, radius) = hypersphere around (near) parent
« Gaussian mutation = sampling from Euclidean ball

Geometric Crossover:

« segment(parentl, parent2) = line segment between parents

« Arithmetic recombination = uniform sampling in Euclidean segmeq;R
O™\

Q-
Zo1

COST ACTION CA22137 2023-2027

Geometric Operators: Binary Strings

Distance metric: Hamming distance (number of differing bits)

Geometric Mutation:
 ball(parent, radius) = all strings within Hamming distance radius
« Bit-flip mutation = sampling from Hamming ball of radius 1

 Example: parent =[1,0,1,0], radius 1
Ball contains strings near the parent: [0,0,1,0], [1,1,1,0], [1,0,0,0],

1,0,1,1], {1,0,1,
[1,0,1,1], [1,0,1,0] PR
o Z
&7

COST ACTION CA22137 2023-2027

Geometric Crossover: Binary Strings

Geometric Crossover:
« segment(parentl, parent2) = all binary strings that lie between the two parents
« Uniform crossover = uniform sampling from Hamming segment

One-point crossover example:
Parent 1: [1,0,1,1,0,0,1,0
Parent 2: [0,1,0,0,1,1,0,1
Offspring:[1,0,1,1,1,1,0,1]

R
Distance check: HD(P1,0) + HD(O,P2) = HD(P1,P2): 2+ 4 =6 OE)P\ \Z
Key insight: Valid crossover offspring lie between their parents! &7

COST ACTION CA22137 2023-2027

Geometric Operators: Permutations

Distance metric: Swap distance (minimum number of swaps)

Geometric Mutation:
 ball(parent, radius) = all permutations within radius swaps
« Swap mutation = sampling from swap ball of radius 1

 Example: parent =[1,2,3,4], radius 1

Ball contains permutations near the parent: [2,1,3,4], [1,3,2,4], [1,2,4,3],

[4,2,3,1], [1,4,3,2], [3,2,1,4], [1,2,3,4] R
SRR
o Z

Sl

COST ACTION CA22137 2023-2027

Geometric Crossover: Permutations

Geometric Crossover:
« segment(parentl, parent2) = all permutations that lie between the two parents
« Geometric crossovers = sampling from swap segment

Order Crossover (OX) example:
Parent 1: [1,2,3,4,5
Parent 2: [3,1,5,2,4
Offspring:[1,2,3,5,4]

R
Distance check: SD(P1,0) + SD(O,P2) = SD(P1,P2): 1 +3 =4 O{,)P \Z
Key insight: OX produces offspring between parents in permutation space! "&£

COST ACTION CA22137 2023-2027

Implication: All* EAs Do Convex Search

Key insight: Geometric crossover always produces offspring "between" parents

Convex search property:
« Population remains in convex hull of initial population + mutations

« Search is inherently conservative and exploitative
« Exploration comes from mutation (expanding the hull)

SN
&7

COST ACTION CA22137 2023-2027

Convex Evolutionary Search

P, ccoB)cco(R) colP,)ccolp,) &

COST ACTION CA22137 2023-2027

Part IlI: Evolutionary Algorithms as
Neighborhood Search

COST ACTION CA22137 2023-2027

Fundamental Concepts

Neighborhood: Set of solutions reachable by a single move

Neighborhood Structure: Graph where nodes = solutions, edges = moves
« Defines which solutions are "adjacent" to each other

 Determined by: all local adjacency relations of all solutions together

« Creates the overall topology of the search space

Neighborhood Search: Algorithm that moves from solution to solution

* Local Search: Move to better neighbor (hill-climbing) R

« Random Walk: Move to random neighbor O \

« Guided Search: Move based on some strategy (e.g., tabu search) &7

COST ACTION CA22137 2023-2027

Connecting EAs to Local Search

Fundamental connection: EAs and local search use the same neighborhood
structures

Two key relationships:
 Mutation vs Local Search
* Crossover vs Path-Relinking

COST ACTION CA22137 2023-2027

Neighborhood Structure Connection

Now I'll reveal what "between" and "close" actually mean algorithmically:

Metric spaces «— Neighborhood structures:

« Distance = shortest path length in neighborhood graph
« "Between" = lying on shortest paths

« "Close" = reachable by few moves

Key insight: geometric segments are actually shortest paths through the
neighborhood graph defined by the distance metric P\R\
O

e . Q-
Unification: EAs use the same neighborhood structure as local search Z@T

COST ACTION CA22137 2023-2027

Representation-Search Space Duality

REPRESENTATION SEARCH SPACE

Syntactic configuration Point in search space

(e.g., binary string) (e.g., point in Hamming space)

Search Operator (algebraic): Search Operator (geometric):

defined in terms of manipulation defined in terms of spatial

of the representation relationships

Operational/Concrete Declarative/Specification

Representation-specific Representation-independent

Edit operations (bit-flip, swap) Moves in metric space OP‘R\
o Z

Sl

COST ACTION CA22137 2023-2027

Representation-Search Space Duality (example)

Traditional uniform crossover can be defined:

(i) geometrically: pick offspring uniformly at random
in the Hamming segment between parent points

(ii) algebraically: generate a random recombination mask
to position-wise select bits from parent strings

Key insight: Same operator, two perspectives! OP\R\

COST ACTION CA22137 2023-2027

Mutation vs Local Search

Geometric Mutation:

« Sample from ball(parent, radius)

« Radius parameter controls neighborhood size
« Single-parent variation

Local Search:
« Sample from direct neighborhood
* Move to better neighbor
 Single-solution evolution R

S AN
Connection: Both use the same neighborhood structure defined & Z
by distance metric Sl

COST ACTION CA22137 2023-2027

Crossover vs Path-Relinking

Geometric Crossover:

« Sample from segment(parent1, parent2)
« Shortest path in neighborhood structure
« Two-parent recombination

Path-Relinking:
« Systematic exploration between two solutions
« Guided intensification along shortest paths

« Two-solution trajectory P\R\
& 2

Connection: Both trace paths through the same metric space ET

COST ACTION CA22137 2023-2027

Crossover as Path Tracing

Binary example:

« Parent1: [0,0,0,0], Parent2: [1,1,1,1]

« Segment: [0,0,0,0] — [1,0,0,0] — [1,1,0,0] — [1,1,1,0] — [1,1,1,1]
* One-point crossover samples points along this path

SN
&7

COST ACTION CA22137 2023-2027

Crossover Principled Design

The representation-search space duality enables principled crossover design:

Step 1: Choose appropriate distance metric for your problem
Step 2. Geometric crossover = sample from segment between parents
Step 3: Implement using edit operations that define the distance

Key insight: Different distance metrics — Different crossover operators

« Hamming distance — Uniform crossover

« Swap distance — Order crossover P\R\

« Edit distance — Novel problem-specific crossovers 09 >
&1

COST ACTION CA22137 2023-2027

Example: TSP Crossover Design

Choose good edit distance: Reversal distance
(i.e., TSP's 2-opt neighborhood)

Geometric definition: Shortest path = minimal
sorting trajectory

Implementation via edit distance: Use sorting
algorithms (sorting by reversals)

Result: New crossover that outperforms
traditional Edge Recombination

General principle: Good neighborhood structures

— Good crossover operators R
£,
&1

COST ACTION CA22137 2023-2027

Part Ill: Distance-Based Tabu Search

COST ACTION CA22137 2023-2027

Tabu Search: Basic Concept

* Core problem: Local search gets trapped in local optima
* Tabu search solution: Use memory to escape local optima

Start with initial solution
Generate neighborhood
Remove tabu (forbidden) moves
Select best remaining move
Update tabu list with new move

Repeat until stopping criterion R
P PPINg O:OP\ \Z

U AN WDN -

Key insight: Short-term memory prevents cycling, enables exploration &7

COST ACTION CA22137 2023-2027

From Attributes to Tabu Regions

« Traditional tabu search uses move attributes (indices, values)
» Attributes define forbidden regions in solution space

Example: Binary string with bit-flip moves
Current solution: [1,0,1,0,1]
Tabu list: [pos1, pos2, pos3] (can't flip positions 1, 2, 3)

Tabu region: All solutions with seen values at positions 1, 2, 3
Tabu region: [*, *, *, 0, 1] which contains 8 solutions R
SRR

Key insight: 3 tabu attributes — region of 8 solutions (not just 3) * Z@T

COST ACTION CA22137 2023-2027

Distance-Based Generalization

Replace attribute-based regions with geometric regions

Two types of generalizations:
1. Convex Hull Regions A

« Tabu region = convex hull of recently visited solutions
2. Ball-Based Regions O

« Tabu region = ball centered at oldest solution in tabu list

SN
&7

COST ACTION CA22137 2023-2027

Generalization 1: Convex Hull Regions

Algorithm:
1. Maintain recent solution history H
2. Tabu region = convex_hull(H)

3. Generate candidates in neighborhood of current solution outside hull
4. Select best non-tabu candidate

Properties:
« Exact generalization of attribute-based TS
* Requires convex hull algorithms (hard)

SN
&7

COST ACTION CA22137 2023-2027

Generalization 2: Ball-Based Regions

Algorithm:
1. Maintain recent solution history H
2. Tabu region = ball(oldest in H, distance_to_current)

3. Generate candidates in neighborhood of current solution outside ball
4. Select best non-tabu candidate

Properties:

« Approximated generalisation of attribute-based TS
« Simple implementation based on ball (easy)

SN
&7

COST ACTION CA22137 2023-2027

Visualization of Both Approaches

Convex Hull Tabu Search:

* Gray shaded region = forbidden area
* Evolving polygonal shape

« Complex but precise memory

Ball-Based Tabu Search:

* Red circle = forbidden area nR

« Simple circular shape O \

« Efficient but approximate memory Z@T

COST ACTION CA22137 2023-2027

Comparison Analysis

Similarities:

« Both achieve cycle prevention through geometric constraints
« Both define forbidden regions in solution space

« Both generalize traditional attribute-based approaches

Differences:
« Shape: Polygon vs circle
« Computation: Complex vs simple

: . : P\R\
Convergence: ldentical behavior in binary string spaces! O:O >
&1

COST ACTION CA22137 2023-2027

Student Activity

Predict: How will search behavior differ between:
1. Convex hull approach
2. Ball-based approach

Consider:

« Search trajectory shapes

« Escape from local optima

« Computational requirements

COST ACTION CA22137 2023-2027

Part IV: API Specification

COST ACTION CA22137 2023-2027

Distance-Based Segment AP| (segment)

Core concept: Segment abstraction for distance-based optimization algorithms

Main components:

1. Segment - Path between two solutions with distance operations

2. Move - Operations that can modify segment endpoints

3. Neighbourhood - Context for segment creation and move generation

SN
&7

COST ACTION CA22137 2023-2027

Distance-Based Segment API (distance)

Distance relationship:

« Segment length represents the distance between two solutions

« Distance metric is defined implicitly by the Neighbourhood implementation

* No explicit distance function distance is encapsulated within segment
operations

Key applications: Distance-based tabu search, path-relinking, nR
geometric crossover 09 \Z

Sl

COST ACTION CA22137 2023-2027

Segment Type and Inspection

Core type
Segment

Basic inspection operations
segment_length(Segment) -> int | float

« segment_length() returns the distance between the segment's two endpoints
« Distance metric depends on the Neighbourhood that created the segment
« Examples: Hamming distance for binary strings, swap distance for permutations

£,
&1

COST ACTION CA22137 2023-2027

Segment Creation

Create segment between two solutions
segment (Neighbourhood, Solution, Solution) -> Segment

First solution becomes the "left end" of the segment

Second solution becomes the "right end" of the segment
Neighbourhood provides the context for distance calculation
Returns a segment object representing the path between solutions

SN
&7

COST ACTION CA22137 2023-2027

Distance-Based Move Generation

Core principle: Generate moves based on their effect on distance between solutions

Moves affecting right endpoint:

Moves that bring right end closer to left end (REDUCE distance)
moves_right_end_closer(Neighbourhood, Segment) -> Move[O..*]
random_moves_right_end_closer(Neighbourhood, Segment) -> Move[O..1]

Moves that take right end farther from left end (INCREASE distance)
moves_right_end_farther(Neighbourhood, Segment) -> Move[O..*]
random_moves_right_end_farther(Neighbourhood, Segment) -> Move[O..1]

. . | NN
Closer moves: Path-relinking (systematically approach target solution) O \Z
Farther moves: Distance-based tabu search (avoid recently visited solutions) “£&7

COST ACTION CA22137 2023-2027

Segment Modification Operations

Apply move to segment endpoints
apply_move_left_end(Move, Segment) -> Segment
apply_move_right_end(Move, Segment) -> Segment

Key properties:

* Moves can be applied to either endpoint independently

« QOperations return updated segment (may be in-place or new object)

« Enables incremental modification of distance-based constraints OPR\

Q-
Zo1

COST ACTION CA22137 2023-2027

Implementation Example: Hamming distance

class HammingSegment:
def _init__(self, left_bits, right_bits):
self.left_bits = lTeft_bits
self.right_bits = right_bits
self._length = sum(1l for i 1in range(len(left_bits))
if left_bits[i] != right_bits[i])

def Tength(self):
return self._length

COST ACTION CA22137 2023-2027

Implementation Example: Hamming distance

class BitFlipMove:
def apply_right_end(self, segment):
Flip bit and update distance incrementally
bit_pos = self.position
old_bit = segment.right_bits[bit_pos]
segment.right_bits[bit_pos] = 1 - old_bit

Update cached distance
if segment.left_bits[bit_pos] == old_bit:
segment._length += 1 # Now differs
else:
segment._length -= 1 # Now matches

COST ACTION CA22137 2023-2027

Design Principles

Preprocessing efficiency:
« Segment class caches expensive computations
« Avoid recomputing distances and move sets

Distance flexibility:
« Support edit distances and related metrics
* Allow domain-specific distance functions

Incremental updates: PR\
« Dynamic segment modification for tabu search/ recombinatiom,:O >
- Efficient segment endpoint updates &1

COST ACTION CA22137 2023-2027

Conclusions and Research Directions
Key Unifying Principles:

1. Distance metrics unify search operators across representations
2. EAs and local search exploit same neighborhood structures

3. Geometric interpretations bridge theory and practice

4. Multiple geometric approaches achieve similar algorithmic goals

SN
&7

COST ACTION CA22137 2023-2027

Open Research Questions

Active research areas:

« Optimal distance selection: Which metrics work best for specific problems?

« Adaptive geometric parameters: Dynamic radius/neighborhood control

« Hybrid geometric approaches: Combining convex hull and ball-based methods
« API extensions: Support for new distance metrics and representations

SN
&7

COST ACTION CA22137 2023-2027

Next Steps for Students

Immediate actions:

1. Implement geometric operators for your project representations

2. Compare convex hull vs ball-based tabu search on your problems

3. Design custom distance metrics for your problem domains

4. Experiment with EA/local search hybrids using the unified framework

Goal: Apply distance-based thinking to your optimization challenges
R
ST,
ISh

COST ACTION CA22137 2023-2027

Thank You!

Questions & Discussion

Resources:

* APl documentation: segment-spec.md

 Visualization tools: Available on GitHub

« Further reading: Geometric Theory of Evolutionary Algorithms

Contact: a.moraglio@exeter.ac.uk
R
IS
Sa

COST ACTION CA22137 2023-2027

This presentation is based upon work from COST Action Randomised
Optimisation Algorithms Research Network (ROAR-NET), CA22137,
supported by COST (European Cooperation in Science and Technology).

COST (European Cooperation in Science and Technology) is a funding agency for research
and innovation networks. Our Actions help connect research initiatives across Europe and
enable scientists to grow their ideas by sharing them with their peers. This boosts their
research, career and innovation.

www.cost.eu

NN
ocosE mes. O \Z

EUROPEAN COOPERATION é\
IN SCIENCE & TECHNOLOGY

http://www.cost.eu/

