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Recap: Constrained Optimization Problems

Decision variables, X = {x1, ..., xk}, the unknowns that describe a solution to a problem

The domain of a variable x, denoted D(x), is a finite set of elements that can be assigned

to x.

A constraint C on X is a subset of the Cartesian product of the domains of the variables

in X , i.e., C ⊆ D(x1)× · · · × D(xk). A tuple (d1, . . . ,dk) ∈ C is called a solution to C.

Equivalently, we say that a solution (d1, ...,dk) ∈ C is an assignment of the value di to the

variable xi for all 1 ≤ i ≤ k, and that this assignment satisfies C.
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Recap: Constrained Optimization Problems

Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables X with domain extension D = D(x1)× · · · × D(xn),
together with a finite set of constraints C, each on a subset of X .

A solution to a CSP is an assignment of a value d ∈ D(x) to each x ∈ X , such that all

constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)

A COP is a CSP P defined on the variables x1, . . . , xn, together with an objective function

f : D(x1)× · · · × D(xn)→ Q that assigns a value to each assignment of values to the

variables.

An optimal solution to a minimization COP is a solution d to P that minimizes the value

of f(d).

Partial vs Complete assignments
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Recap: Randomized Optimization Algorithms (ROAs)

Two heuristic search paradigms:

• Constructive search (works on partial solutions)

• Local search (works on complete solutions)

plus high level guiding strategies (ie, metaheuristics), eg, evolutionary algorithms.
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Recap: Constraint Handling

Constraints in heuristic methods are handled:

• as one-way constraints between variables

• implicitly in the definition of the combinatorial structures that constitute the

search states:

assignments, permutations, (sub)sets, partitions, (sub)graphs, sequences, set of

sequences, ...

• as soft constraints

ie, relaxed in the evaluation function as penalty components with large weights or as

lexicographically more important componenents
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Examples

We will use the following examples to illustrate the concepts of solution representation

and constructive search:

• Traveling Salesman Problem

• Single Machine Total Weighted Tardiness

• Knapsack Problem

• Graph Vertex-Coloring
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Traveling Salesman Problem

Given: A graph G = (V ,E) and a weight function ω : E → R.

Task: Find the shortest Hamiltonian tour.

sol. representation:

permutation of vertices or

assignment of successors

sol. representation:

set of adjacent edges

sol. representation:

set of edges or

incidence binary vector
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Single Machine Total Weighted Tardiness

Given: a set of n jobs {J1, . . . , Jn} to be processed on a single machine

and for each job Ji a processing time pi , a weight wi and a due date di .

Task: Find a schedule that minimizes the total weighted tardiness
∑n

i=1wi · Ti , where
Ti = max{Ci − di, 0} (Ci completion time of job Ji)

Example (Instance)

Job J1 J2 J3 J4 J5 J6
Processing Time 3 2 2 3 4 3

Due date 6 13 4 9 7 17

Weight 2 3 1 5 1 2

Sol. representation:

Linear permutation

φ =
[
J3, J1, J5, J4, J1, J6

]
Job J3 J1 J5 J4 J2 J6
Ci 2 5 9 12 14 17

Ti 0 0 2 3 1 0

wi · Ti 0 0 2 15 3 0
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Knapsack Problem

Given: A ground set of items with weights and values. A knapsack with a weight capacity.

Task: Find the subset that maximizes the total value

Example (Instance)

Capacity = 15

Item Weight Value

1 4 10

2 8 15

3 5 7

4 5 8

5 9 10

6 7 7

7 3 4

8 1 3

Sol. representation: Set: {1, 2, 7} or Incidence vector: [1, 1, 0, 0, 0, 0, 1, 0]
Total weight: 15; Total value: 26
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Graph Vertex-Coloring

Given: A graph G and a set of colors Γ.

A proper coloring: each vertex receives a color and no two adjacent vertices receive the

same color.

Assignment representation Partitioning representation

Task:

Find a proper coloring of G that uses the minimal number of colors (chromatic number).
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A Search Problem

Problem statement

Constrained Optimization Problem: min{f(s) | s ∈ F}
• F ⊆ S set of feasible solutions

• S set of candidate solutions (combinatorial structures)

The concept of feasibility is flexible and a design choice.

Most typically, it implies satisfying the constraints of the problem.

Guiding rule: if it has an objective function value, then it is a feasible solution

Guiding rule: constructive search algorithms work with partial, infeasible

solutions

Example: a partial tour does not have an objective function value (ie, we do not have an

Hamiltonian cycle yet, hence its length is not a valid objective function value).
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Partial vs Complete and Infeasible vs Feasible

The previous guiding rules are often broken:

- Constructive search on partial sols and local search on complete sols not always true

- Partial vs Complete 6= Infeasible vs Feasible

For example in the Graph Vertex-Coloring different choices for candidate solutions are

used in local search algorithms (last column indicates the frequency in the literature):

k-fixed complete proper +
k-fixed partial proper +
k-fixed complete unproper +++
k-fixed partial unproper

k-variable complete proper ++
k-variable partial proper +
k-variable complete unproper ++
k-variable partial unproper

So don’t take me too rigidly in this organization! :)
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A Search Problem

Definition (Search or Optimization Algorithm)

Goal formulation: we want to find the minimum with respect to some criterion from a

set of candidate elements.

Problem formulation: Given a description of the states, an initial state and actions

necessary to reach the goal, find a sequence of actions to reach the goal.

Search: the algorithm simulates sequences of actions in the model of the goal,

searching until it finds a sequence of actions that reaches the goal.

The algorithm might have to simulate multiple tentative answers that do not meet the

goal, but eventually it reaches a solution, or it will find that no solution is possible.
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Components of a Search Algorithm (1)

(valid for complete or heuristic and constructive or perturbative algorithms)

• State or (Candidate) solution: a definition of the states of the search

• Search Space: A set of possible states that the search can be in.

• Initial State: State the search starts in.

• Goal: A set of one or more goal states. Sometimes there is one goal state

sometimes there is a small set of alternative goal states

• Evaluation function f(s): assesses the distance from a potential goal.

(note: different from ”objective”, it can also include penalties due to constraint

violations).
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Components of a Search Algorithm (2)

• Action Type t: available to the algorithm. Neighborhood

• A finite set of actions of type t that can be executed in s, Actions(t, s). Move

• A transition model that describes what each action does. Result(s,a) returns the
state that results from doing action a ∈ Actions(t, s) in state s. Apply Move

• An action-cost function, Action-Cost(s,a, s′), that gives the numeric cost of

applying action a in state s to reach state s′. Increment
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ROAR-NET Application Programming Interface (API)

(Note: Here not meant as Web API, network-based API, or REST API.)

The ROAR-NET API Specification is the definition of an interface or protocol between

optimization problems seen as black box and their solvers in order to facilitate

understanding, reusing and scaling of solution approaches.

We look for a model that

• ... allows one to use off the shelf components to solve it.

• ... assumes a separation between problem specifics and solver.

• .. is designed as a software interface offering a service to other pieces of software

and is implemented by the user.

• ... promotes reusability of software components and minimizes the user’s effort to

deploy a solution for the specific optimization problem at hand.

• ... maximizes code extensability, reusability, and simplicity.
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The Full API

# Types
Problem
Solution
Value
Increment
PreferenceModel
Neighborhood
Move

# Operations on Problem
empty_solution
random_solution
heuristic_solution

# Operations on Solution
objective_value
lower_bound
copy_solution

# Operations on Neighborhood
local_neighbourhood
construction_neighbourhood
destruction_neighbourhood
sub_neighbourhoods

# Operations on Move
moves
random_move
random_moves_without_replacement
lower_bound_increment
objective_value_increment
apply_move
invert_move

# Operations on PreferenceModel
scalarisation
better_or_indifferent # preorder
better # strict preorder
indifferent # equivalence
incomparable

compare_total_order
compare_partial_order

selection # Indices
ranking # Rank/class valueshttps://github.com/roar-net/roar-net-api-spec

https://github.com/roar-net/roar-net-api-spec
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Dynamic Programming (DP)

• Applied to problems with optimal substructure and overlapping subproblems

• Optimal substructure means an optimal solution can be constructed from optimal

solutions to its subproblems

• Overlapping subproblems means solving each subproblem separately requires

repeating certain operations

• DP begins with desired problem and recurses down to smaller and smaller

subproblems, retrieving the value of previously solved problems as necessary

• Principle of Optimality (known as Bellman Optimality Conditions): Suppose that the

solution of a problem is the result of a sequence of n decisions D1,D2, ...,Dn; if a

given sequence is optimal, then the first k decisions must be optimal, but also the

last n− k decisions must be optimal



35

Knapsack Problem

• Let the V(i,w) (the so-called value function) be the maximum value achievable

using the first i items and a knapsack capacity w.

• Consider the ith item. You can either use it or not.

• If you don’t use it, then the value of your knapsack will be

V(i − 1,w)

• If you use it, then the value of your knapsack will be

V(i − 1,w −wi) + vi
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The Recursion

• For each item i and weight w:

V(i,w) =



0 if i = 0

max

{
V(i − 1,w) (discard new item)

V(i − 1,w −wi) + vi (include new item)
if wi ≤ w

V(i − 1,w) if wi > w

• Optimal solution:

z∗ = V(n,W)

and trace back to find the items collected.
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Visual Representation
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SMTWT Problem

• 1 | |
∑

hj(Cj)1 | |
∑

hj(Cj)1 | |
∑

hj(Cj) generalization of
∑

wjTj (strongly NP-hard)

• (Forward) dynamic programming algorithm that runs in O(2n)

J set of jobs already scheduled;

V(J) =
∑

j∈J hj(Cj) the value of a sequence of the jobs in J;

Step 1: Set J = ∅, V∗({j}) = V({j}) = hj(pj), j = 1, . . . ,n

Step 2: V∗(J) = minj∈J
(
V∗(J − {j}) + hj

(∑
k∈J pk

))
best value of the set of jobs in J;

Step 3: If J = {1, 2, . . . ,n} then V∗({1, 2, . . . ,n}) is optimum,

otherwise go to Step 2.
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Traveling Salesman Problem

The TSP asks for the shortest tour that starts from 0, visits all cities of the set

C = {1, 2, ...,n} exactly once, and returns to 0, where the cost to travel from i to j is cij
(with (i, j) ∈ A)

If the optimal solution of a TSP with six cities is (0, 1, 3, 2, 4, 6, 5, 0), then...

• the optimal solution to visit {1, 2, 3, 4, 5, 6} starting from 0 and ending at 5 is

(0, 1, 3, 2, 4, 6, 5)

• the optimal solution to visit {1, 2, 3, 4, 6} starting from 0 and ending at 6 is

(0, 1, 3, 2, 4, 6)

• the optimal solution to visit {1, 2, 3, 4} starting from 0 and ending at 4 is (0, 1, 3, 2, 4)

• the optimal solution to visit {1, 2, 3} starting from 0 and ending at 2 is (0, 1, 3, 2)

• the optimal solution to visit {1, 3} starting from 0 and ending at 3 is (0, 1, 3)

• the optimal solution to visit 1 starting from 0 is (0, 1)

The optimal solution is made up of a number of optimal solutions of smaller

subproblems
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Enumerate All Solutions of the TSP

• A solution of a TSP with n cities derives from a sequence of n decisions, where the

kth decision consists of choosing the kth city to visit in the tour

• The number of nodes (or states) grows exponentially with n
• At stage k, the number of states is

(
n
k

)
k!

• With n = 6, at stage k = 6, this yeilds 720 states
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Are All States Necessary?

If path (0, 1, 2, 3) costs less than (0, 2, 1, 3), the optimal solution cannot be found in the

blue part of the tree
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Are All States Necessary?

If path (0, 1, 2, 3, 4, 5) costs less than (0, 1, 2, 4, 3, 5), the optimal solution cannot be found

in the blue part of the tree
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Are All States Necessary?

• At stage k (1 ≤ k ≤ n), for each subset of cities S ⊆ C of cardinality k, it is necessary

to have only k states (one for each of the cities of the set S)

• At state k = 3, given the subset of cities S = {1, 2, 3}, three states are needed:
• the shortest-path to visit S by starting from 0 and ending at 1
• the shortest-path to visit S by starting from 0 and ending at 2
• the shortest-path to visit S by starting from 0 and ending at 3

• At stage k,
(
n
k

)
k states are required to compute the optimal solution (not

(
n
k

)
k!)

#States n = 6

Stage
(
n
k

)
k!

(
n
k

)
k

1 6 6

2 30 30

3 120 60

4 360 60

5 720 30

6 720 6
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Complete Trees with n=4
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Dynamic Programming Recursion for the TSP (1/2)

• Given a subset S ⊆ C of cities and k ∈ S, let V(S, k) be the optimal cost of starting

from 0, visiting all cities in S, and ending at k

• Begin by finding V(S, k) for |S| = 1, which is V({k}, k) = c0k ,∀k ∈ C
• To compute V(S, k) for |S| > 1, the best way to visit all cities of S by starting from 0
and ending at k is to consider all j ∈ S \ {k} immediately before k, and look up

V(S \ {k}, j), namely

V(S, k) = min
j∈S\{k}

{V(S \ {k}, j) + cjk}

• The optimal solution cost z∗ of the TSP is z∗ = mink∈C{V(C, k) + ck0}
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Dynamic Programming Recursion for the TSP (2/2)

More schematically, DP for TSP [Held and Karp (1962)]:

1. Initialization. Set V({k}, k) = c0k for each k ∈ C

2. Recursive Step. For each stage r = 2, 3, ...,n, compute

V(S, k) = min
j∈S\{k}

{V(S \ {k}, j) + cjk} for all S ⊆ C : |S| = r and for all k ∈ S

3. Optimal Solution. Find the optimal solution cost z∗ as

z∗ = min
k∈C
{V(C, k) + ck0}

• With DP, TSP instances with up to 25-30 nodes can be solved to optimality; other

solution techniques (i.e., branch-and-cut) are able to solve TSP instances with up to

85,900 customers
• Nonetheless, DP represents the state-of-the-art techniques to solve a wide variety of

search problems
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Complete Graph Search Methods

Tree (or graph) search in

Uninformed settings

• Breadth-first search

• Uniform-cost search

• Depth-first search

Informed settings

• Greedy best-first search

• A∗ search
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Complete Tree Search

For CSPs with n variables and d values, we can use a complete tree search with

Search Space

Tree with branching factor at the top level nd

at the next level the branching factor is (n− 1)d.
The tree has n! · dn leaves even if only dn possible complete assignments.

• CSP is commutative in the order of application of any given set of action

(i.e., we reach same partial solution regardless of the order)

• Hence, generate successors by considering possible assignments for only a single

variable at each node in the search tree. The tree has now dn leaves

• use information: look-ahead, best first, etc.
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Exploiting Information

Assessment of partial, infeasible solutions

The priority assigned to a node x is determined by the function

f(x) = g(x) + h(x)

g(x): cost of the path so far

h(x): heuristic estimate of the minimal cost to reach the goal from x.

• greedy best-first search uses h to decide

• A? best-first search uses f and is cost-optimal when reaches the goal, if h(x) is an
• admissible heuristic: never overestimates the cost to reach the goal
• consistent: h(n) ≤ c(n,a,n′) + h(n′)
(consistent⇒ admissible, only necessary in graph search)
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Best-First Search

Procedure TreeSearch(start, target)
add start to visited
add start to queue
while queue is not empty do

current_node ← vertex of queue with min distance to targeta

remove current_node from queue
for each neighbor n of current_node do

if n not in visited then

if n is target then
return n

else

mark n as visited
add n to queue

return failure

aGreedy best-first: min distance to target = h(n);

A? best-first: min sum of distance so far and distance to target = f(n)
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Example

Find shortest path from Arad to Bucharest:

Right: The tree explored by A? search

[P. Norvig and N. Russel, AI: A Modern Approach, 4th ed., 2020]
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Heuristic Functions

Possible choices for admissible heuristic functions in A? search:

• optimal solution to an easily solvable relaxed problem

• optimal solution to an easily solvable subproblem

• learning from experience by gathering statistics on state features

• preferred heuristic functions with higher values (provided they do not overestimate)

• if several heuristics available h1,h2, . . . ,hm and not clear which is the best then:

h(x) = max{h1(x), . . . ,hm(x)}
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A Star Search

Drawbacks:

• Time complexity: In the worst case, the number of nodes expanded is exponential,

(but it is polynomial when the heuristic function h meets the following condition:

|h(x)− h∗(x)| ≤ O(logh∗(x))

h∗ is the optimal heuristic, the exact cost of getting from x to the goal.)

• Memory usage: In the worst case, it must remember an exponential number of

nodes.

Several variants: including iterative deepening A? (IDA∗), memory-bounded A? (MA∗)

and simplified memory bounded A? (SMA∗) and recursive best-first search (RBFS)
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Dealing with Constraints

Backtracking search

Depth-first search that chooses one variable at a time and backtracks when a variable

has no feasible values left to assign.

• No need to copy solutions all the times but rather extensions and undo extensions

• Since CSP is standard then the algorithm (initial state + successor function + goal

test) is also standard ⇒ general purpose solvers

• Backtracking is uninformed and complete. Other search algorithms may use

information in form of heuristics.
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Informed Search with Constraints

Which variable should we assign next, and in which order should its values be tried?

• Select-Initial-Unassigned-Variable

• Select-Unassigned-Variable
• most constrained first = fail-first heuristic

= Minimum remaining values (MRV) heuristic

(tend to reduce the branching factor and to speed up pruning)
• least constrained last

Eg.: max degree, farthest, earliest due date, etc.

• Order-Domain-Values
• greedy
• least constraining value heuristic

(leaves maximum flexibility for subsequent variable assignments)
• maximal regret

implements a kind of look ahead
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Branch and Bound

LIST ← {S} ; # S root of the branching tree

ub ← value of some heuristic solution;

current_best ← heuristic solution;

while LIST 6= ∅ do
Choose a branching node k from LIST;
Remove k from LIST;
Generate childi of k, for i = 1, . . . ,nk, and calculate corresponding lower bounds lbi ;

for i = 1 to nk do

if lbi < ub then

if childi consists of a feasible solution then

ub← lbi ;

current_best ← solution corresponding to childi ;
else

add childi to LIST;

else

prune;

Pruning happens: (i) by bound (ii) by optimality (iii) by infeasibility
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Branch and Bound

Branch and bound vs Backtracking

= a state space tree is used to solve a problem.

6= branch and bound does not limit us to any particular way of traversing the tree

(backtracking is depth-first)

6= branch and bound is used only for optimization problems.

Branch and bound vs A?

= In A? the admissible heuristic mimics bounding

6= In A? there is no branching. It is a search algorithm.

6= A? is best first
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Branch and Bound: Strategies

[Jens Clausen (1999). Branch and Bound Algorithms

- Principles and Examples.]

• Eager Strategy:

1. select a node

2. branch

3. for each subproblem compute bounds and compare with incumbent solution

4. discard or store nodes together with their bounds

(Bounds are calculated as soon as nodes are available)

• Lazy Strategy:

1. select a node

2. compute bound

3. branch

4. store the new nodes together with the bound of the father node

(often used when selection criterion for next node is max depth)
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Branch and Bound: Components

1. Initial feasible solution (heuristic) – might be crucial!

2. Bounding function

3. Strategy for selecting

4. Branching

5. Fathoming (dominance test)
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Branch and Bound: Bounding Techniques

min
s∈P

g(s) ≤
{

mins∈P f(s)
mins∈F g(s)

}
≤ min

s∈F
f(s)

P: candidate solutions; S ⊆ P feasible solutions

Techniques:

• Linear programming

• Combinatorial relaxation

• Lagrangian relaxation

• Duality

should be polytime and tight (trade off)
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Branch and Bound: Search Strategy

Strategies for selecting the next subproblem:

• best first

(combined with eager strategy but also with lazy)

• breadth first

(memory problems)

• depth first

works on recursive updates (hence good for memory)

but might compute a large part of the tree which is far from optimal

(enhanced by alternating search in lowest and largest bounds combined with

branching on the node with the largest difference in bound between the children)

(it seems to perform best)
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Branch and Bound: Branching

• dichotomic

• polytomic



81

Outline

1 Introduction

2 The ROAR-NET API

3 Solving Problems by Complete Search

4 Solving Problems by Incomplete Search

Incomplete Search Ideas

Construction-Based Metaheuristics



82

Outline

1 Introduction

2 The ROAR-NET API

3 Solving Problems by Complete Search

Dynamic Programming

Tree Search

Optimization Problems

Backtracking

Branch and Bound

4 Solving Problems by Incomplete Search

Incomplete Search Ideas

Construction-Based Metaheuristics



87

Greedy Algorithms

• Algorithms based on incomplete versions of greedy best-first search perform a

single descent in the search tree.

• They always expand the current state and does not maintain an open set (frontier)

• Strategy: always make the choice that is best at the moment

• Sometimes, they guarantee the optimal solution: Minimum Spanning Tree, Single

Source Shortest Path, etc.)
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Greedy Algorithms in the ROAR-NET API

def greedy_construction(problem, solution):
neigh = problem.construction_neighbourhood()
if solution is None:

solution = problem.empty_solution()
move_iter = iter(_valid_moves_and_increments(neigh, solution))
move_and_incr = next(move_iter, None)
while move_and_incr is not None:

best_move, best_incr = move_and_incr
for move, incr in move_iter:

if incr < best_incr:
best_move, best_incr = move, incr
if incr == 0:

break
solution = best_move.apply_move(solution)
move_iter = iter(_valid_moves_and_increments(neigh, solution))
move_and_incr = next(move_iter, None)

return solution

def _valid_moves_and_increments(neigh, solution):
for move in neigh.moves(solution):

incr = move.objective_value_increment(solution)
yield (move, incr) if incr < 0 else continue
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Incomplete Search

On the backtracking framework

(beyond depth-first search)

• Bounded backtrack

• Credit-based search

• Limited Discrepancy Search

• Barrier Search

• Randomization in Tree Search

• Random Restart

Outside the exact framework

(beyond greedy search)

• Random Restart

• Rollout/Pilot Method

• Beam Search

• Iterated Greedy

• GRASP

• (Adaptive Iterated Construction Search)

• (Multilevel Refinement)
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Bounded Backtrack

Visualizations by Helmut Simonis
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Credit-Based Search

• Key idea: important decisions are at the

top of the tree

• Credit = backtracking steps

• Credit distribution: one half at the best

child the other divided among the other

children.

• When credits run out follow

deterministic best-search

• In addition: allow limited backtracking

steps (eg, 5) at the bottom

• Control parameters: initial credit,

distribution of credit among the

children, amount of local backtracking

at bottom.



94

Limited Discrepancy Search

• Key observation that often the heuristic

used in the search is nearly always

correct with just a few exceptions.

• Explore the tree in increasing number of

discrepancies, modifications from the

heuristic choice.

• Eg: count one discrepancy if second

best is chosen

count two discrepancies either if third

best is chosen or twice the second best

is chosen

• Control parameter: the number of

discrepancies
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Randomization in Tree Search

Idea: important decisions are made up in the search tree (backdoors - set of variables

such that once they are instantiated the remaining problem simplifies to a tractable form)

 random selections + restart strategy

Random selections

• randomization in variable ordering:
• breaking ties at random
• use heuristic to rank and randomly pick from small factor from the best
• random pick among heuristics
• random pick variable with probability depending on heuristic value

• randomization in value ordering:
• just select random from the domain

Restart strategy with different budget in backtracking (if kept running it becomes

complete)

• Example: B = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 4, 8, 1, . . .)
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Rollout/Pilot Method

Derived from A?

• Master process adds components sequentially to a partial solution Sk = (s1, s2, . . . sk)

• At the kth iteration the master process evaluates feasible components to add based

on a heuristic look-ahead strategy.

• The evaluation function H(Sk+1) is determined by sub-heuristics that complete the

solution starting from Sk

• Sub-heuristics are combined in H(Sk+1) by
• weighted sum
• minimal value

Note: this evaluation does not need to be a lower bound!
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Rollout/Pilot Method

Speed-ups:

• halt whenever cost of current partial solution exceeds current upper bound

• evaluate only a fraction of possible components
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Beam Search

Based on the tree search framework:

• maintain a set B of bw (beam width) partial candidate solutions

• at each iteration extend each solution from B in fw (filter width) possible ways

• rank each bw × fw candidate solutions and take the best bw partial solutions

• complete candidate solutions obtained by B are maintained in Bf

• stop when no partial solution in B is to be extended
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Visualization of Beam Search

Three phases of Beam Search illustrated with beam width bw = 3 and expansion factor

bf = 2. [Choo, Jinho et al. 2022]

https://paperswithcode.com/paper/simulation-guided-beam-search-for-neural


102

Greedy Randomized Adaptive Search Procedure

Greedy Randomized ”Adaptive” Search Procedure, aka, GRASP

Key Idea: Combine randomized constructive search with subsequent local search.

Motivation:

• Candidate solutions obtained from construction heuristics can often be substantially

improved by local search.

• Local search methods often require substantially fewer steps to reach high-quality

solutions when initialized using greedy constructive search rather than random

picking.

• By iterating cycles of constructive + local search, further performance improvements

can be achieved.
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GRASP

Procedure GRASP();

while termination criterion is not satisfied do
generate candidate solution s using subsidiary greedy randomized

constructive search;

perform subsidiary local search on s ;

• Randomization in constructive search ensures that a large number of good starting

points for subsidiary local search is obtained.

• Constructive search in GRASP is ‘adaptive’ (or dynamic):

Heuristic value of solution component to be added to

a given partial candidate solution may depend on

solution components present in it.

• Variants of GRASP without local search phase

(aka semi-greedy heuristics) typically do not reach

the performance of GRASP with local search.
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GRASP

• Each step of constructive search adds a solution component selected uniformly at

random from a restricted candidate list (RCL).

• RCLs are constructed in each step using a heuristic function h.

• RCLs based on cardinality restriction comprises the k best-ranked solution

components.

(k is a parameter of the algorithm.)

• RCLs based on value restriction comprise all solution components ` for which
h(`) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value of h for any `.
(α is a parameter of the algorithm)

• Possible extension: reactive GRASP (dynamic adaptation of α during search)
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A GRASP Example: SqueakyWheel

Key idea: solutions can reveal problem structure which maybe worth to exploit.

Use a greedy heuristic repeatedly by prioritizing the elements that create troubles.

Squeaky Wheel

• Constructor: greedy algorithm on a sequence of problem elements.

• Analyzer: assign a penalty to problem elements that contribute to flaws in the

current solution.

• Prioritizer: uses the penalties to modify the previous sequence of problem

elements. Elements with high penalty are moved toward the front.

Possible to include a local search phase between one iteration and the other
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Iterated Greedy

Key idea: use greedy construction

• alternation of construction and deconstruction phases

• an acceptance criterion decides whether the search continues from the new or from

the old solution.

Procedure Iterated Greedy;

determine initial candidate solution s;

while termination criterion is not satisfied do

r ← s;

(randomly or heuristically) destruct part of s;

greedily reconstruct the missing part of s;

based on acceptance criterion, keep s or revert to s← r

[Hoos, Stützle, SLS FA, 2004]
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Very Large Scale Neighborhood Algorithms

• Local search algorithms typically explore small neighborhoods of a solution. Very

large scale neighborhood (VLSN) algorithms are a generalization to large

neighborhoods that can be searched efficently.

• Algorithms that proceed by iteratively destroying and repairing a solution can be

seen as performing a neighborhood search in a large neighborhood as well.

• Examples of this kind are:

• Iterated greedy

• Large Neighborhood Search (LNS) proposed by [Shaw, 1998] use constraint programming

to reconstruct a solution after destroying part of it.

• Adaptive Large Neighborhood Search (ALNS) [Røpke and Pisinger, 2006]
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Large Neighborhood Search (LNS)

d() destruction (destroy) method

r() reconstruction (repair) method

The LNS metaheuristic does not search the entire neighborhood of a solution, but merely

samples this neighborhood.



110

Large Neighborhood Search (LNS)

Acceptance criterion:

• always
• only if better
• record-to-record travel

(accept if f(s′) ≤ (1 + ε)f(sb))
• threshold accepting (Metropolis

criterion)
• simulated annealing criterion

Degree of destruction

• gradually increase
• randomly chosen from a specific range

dependent on the instance size

To guarantee connectivity, it must be

possible to destroy every part of the

solution.

Repair method:

• problem-specific heuristic
• exact method
• general purpose mixed integer

programming (MIP) (aka, fix and

optimize)
• constraint programming solver

(aka, fix and optimize)

It should allow diversification
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Adaptive Large Neighborhood Search (ALNS)

Key Idea: allow multiple destroy and repair methods controlling with an adaptive

weighting system how often a particular method is attempted during the search [Røpke,

Pisinger, 2006]
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Adaptive Large Neighborhood Search (ALNS)

Selection mechanism: roulette wheel principle:

p(j) =
ρ−j∑

k∈Ω−
ρ−k

Update mechanism:

Ψ = max


ω1 if the new solution is a new global best

ω2 if the new solution is better than the current one

ω3 if the new solution is accepted

ω4 if the new solution is rejected

with normally ω1 ≥ ω2 ≥ ω3 ≥ ω4 ≥ 0. Only accepted a and b are updated:

ρ−a = λρ−a + (1− λ)Ψ, ρ+b = λρ+b + (1− λ)Ψ

λ ∈ [0, 1] is a decay parameter
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ALNS: Design Choices

Destroy methods:
• diversification: random destroy method.

• intensification: remove q “critical” variables, i.e. variables having a large cost or

variables that spoil the current structure of the solution (e.g. edges crossing each

other in an Euclidean TSP). This is known as worst destroy or critical destroy.

• related destroy: select a set of customers that have a high mutual relatedness

measure. Eg on the CVRP, relatedness measure between each pair of customers is

distance between the customers (and it could include customer demand)

• history based destroy: q variables are chosen according to some historical

information,

Repair methods:
• greedy heuristics, problem specific
• include local search
• exact algorithms
• mixed integer programming (aka, matheuristic)
• constraint programming
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ALNS: Design Choices

Large multiple-neighborhood search (LMNS) heuristics: It may be sufficient to have a

number of destroy and repair heuristics that are selected randomly with equal

probability, that is, without the adaptive layer.

Same robustness as ALNS heuristics, while fewer parameters to calibrate.
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ALNS: Other Relations

• Variable Neighborhood Search

• Portfolio Algorithms

• Hyperheuristics

• Reinforcement learning



116

Adaptive Iterated Construction Search (AICS)

Key Idea: Alternate construction and local search phases as in GRASP, exploiting

experience gained during the search process.

Realisation:

• Associate weights with possible decisions made during constructive search.

• Initialize all weights to some small value τ0 at beginning of search process.

• After every cycle (= constructive + local search phase), update weights based on

solution quality and solution components of current candidate solution.
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Adaptive Iterated Construction Search (AICS)

Procedure AICS();

initialise weights;

while termination criterion is not satisfied do
generate candidate solution s using subsidiary randomized constructive

search;

perform subsidiary local search on s;

adapt weights based on s;
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AICS: Components

Subsidiary constructive search:

• The solution component to be added in each step of constructive search is based

on:

i) weights and

ii) heuristic function h.

• h can be standard heuristic function as, e.g., used by

greedy heuristics

• It is often useful to design solution component selection in constructive search such

that any solution component may be chosen (at least with some small probability)

irrespective of its weight and heuristic value.
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AICS: Components

Subsidiary local search:

• As in GRASP, local search phase is typically important for achieving good

performance.

• Can be based on Iterative Improvement or more advanced LS method (the latter

often results in better performance).

• Tradeoff between computation time used in construction phase vs local search

phase (typically optimized empirically, depends on problem domain).
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AICS: Components

Weight updating mechanism:

• Typical mechanism: increase weights of all solution components contained in

candidate solution obtained from local search.

• Can also use aspects of search history;

e.g., current candidate solution can be used as basis for

weight update for additional intensification.
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Example: A simple AICS algorithm for the TSP (1/2)

[ Based on Ant System for the TSP, Dorigo et al. 1991 ]

• Search space and solution set as usual (all Hamiltonian cycles in given graph G).

However represented in a construction tree T .

• Associate weight τij with each edge (i, j) in G and T

• Use heuristic values ηij := 1/wij .

• Initialize all weights to a small value τ0 (parameter).

• Constructive search start with randomly chosen vertex

and iteratively extend partial round trip π by selecting vertex

not contained in π with probability

Pr(πj) =
[τij]

α · [ηij]β∑
l∈N′(i)[τil]

α · [ηij]β
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Example: A simple AICS algorithm for the TSP (2/2)

• Subsidiary local search = typical iterative improvement

• Weight update according to

τij := (1− ρ) · τij +∆(ij, s′)

where ∆(i, j, s′) := 1/f(s′), if edge ij is contained in

the cycle represented by s′, and 0 otherwise.

• Criterion for weight increase is based on intuition that edges contained in short

round trips should be preferably used in subsequent constructions.

• Decay mechanism (controlled by parameter ρ) helps to avoid unlimited growth of

weights and lets algorithm forget past experience reflected in weights.

• (Just add a population of cand. solutions and you have

an Ant Colony Optimization Algorithm!)
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