COST Action CA22137 2023-2027

\>\R
O .
Q \ Constructive Search

E,i 1st ROAR-NET Training School

Marco Chiarandini marco@imada.sdu.dk

EUROPEAN COOPERATION
IN SCIENCE & TECHNOLOGY

mailto:marco@imada.sdu.dk

Outline

@ 'ntroduction
@ The ROAR-NET API
® Solving Problems by Complete Search

@ Solving Problems by Incomplete Search

Outline

@ 'ntroduction

Recap: Constrained Optimization Problems

Decision variables, X = {x;, ..., x(}, the unknowns that describe a solution to a problem

The domain of a variable x, denoted D(x), is a finite set of elements that can be assigned
to x.

A constraint C on X is a subset of the Cartesian product of the domains of the variables
in X,ie, CCD(xy) x -+ xD(xx). Atuple (dy,...,dx) € C is called a solution to C.

Equivalently, we say that a solution (d1, ..., d,) € C is an assignment of the value d; to the
variable x; for all 1 </ < k, and that this assignment satisfies C.

Recap: Constrained Optimization Problems

Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables X with domain extension D = D(x;) x -+ x D(x,),
together with a finite set of constraints C, each on a subset of X.

A solution to a CSP is an assignment of a value d € D(x) to each x € X, such that all
constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)

A COP is a CSP P defined on the variables xi, ..., x,, together with an objective function
f:D(x1) x -+ x D(x,) — Q that assigns a value to each assignment of values to the

variables.
An optimal solution to a minimization COP is a solution d to P that minimizes the value

of £(d).

Partial vs Complete assignments

Recap: Randomized Optimization Algorithms (ROAs)

Two heuristic search paradigms:
® Constructive search (works on partial solutions)
® | ocal search (works on complete solutions)

plus high level guiding strategies (ie, metaheuristics), eg, evolutionary algorithms.

Metaheuristic

Construction Local Search
Heuristics

Recap: Constraint Handling

Constraints in heuristic methods are handled:
® as one-way constraints between variables

¢ implicitly in the definition of the combinatorial structures that constitute the
search states:
assignments, permutations, (sub)sets, partitions, (sub)graphs, sequences, set of
sequences, ...

® as soft constraints
ie, relaxed in the evaluation function as penalty components with large weights or as
lexicographically more important componenents

Examples

We will use the following examples to illustrate the concepts of solution representation
and constructive search:

® Traveling Salesman Problem
® Single Machine Total Weighted Tardiness
® Knapsack Problem

® Graph Vertex-Coloring

Traveling Salesman Problem

Given: A graph G = (V,E) and a weight function w : £ — R.

Task: Find the shortest Hamiltonian tour.

o) [¢] o—0
(o]
(o]
sol. representation: sol. representation: sol. representation:
permutation of vertices or set of adjacent edges set of edges or

assignment of successors incidence binary vector

Single Machine Total Weighted Tardiness

Given: a set of n jobs {Jy,...,J,} to be processed on a single machine
and for each job J; a processing time p;, a weight w; and a due date d,.

Task: Find a schedule that minimizes the total weighted tardiness >, w; - 7;, where
T = max{C; — d;,0} (C; completion time of job J))

Example (Instance)

Job Ji1 Jo Jz Js U5 g
Processing Time 3 2 2 3 4 3
Due date 6 13 4 9 7 17
Weight 2 3 1 B 1T 2

Job Jz N Js Jy Jdo g
2 5 9 12 14 17
T o o0 2 3 170
0O o 2 1B 3 O

Sol. representation:
Linear permutation

¢ = [Js3,J1,Js, 4,1, Js]

Knapsack Problem

Given: A ground set of items with weights and values. A knapsack with a weight capacity.
Task: Find the subset that maximizes the total value

Example (Instance)

Capacity =15

ltem Weight Value KNAPSACK PROBLEM
1 2 0 Capacity = 15 kg Item 1
Weight: 4kg
2 8 15 \ /7 Value: $10
8 5 7 s Item 2
4 5 8 Ve Weight;Skg
e Value: $15
2 3 1$ = \ Item 3
7 3 4 Decision: pick items to maximize yaelﬁttfsgkg
5 ” 3 total value, but total weight must be < 15kg

Sol. representation: Set: {1,2, 7} or Incidence vector: [1,1,0,0,0,0,1,0]
Total weight: 15; Total value: 26 »

Graph Vertex-Coloring

Given: A graph G and a set of colors I

A proper coloring: each vertex receives a color and no two adjacent vertices receive the
same color.

Assignment representation Partitioning representation

Task:
Find a proper coloring of G that uses the minimal number of colors (chromatic number).

Outline

@ The ROAR-NET API

A Search Problem

Problem statement
Constrained Optimization Problem: min{f(s) | s € F}
e F C S set of feasible solutions
e S set of candidate solutions (combinatorial structures)

The concept of feasibility is flexible and a design choice.
Most typically, it implies satisfying the constraints of the problem.

Guiding rule: if it has an objective function value, then it is a feasible solution

Guiding rule: constructive search algorithms work with partial, infeasible
solutions

Example: a partial tour does not have an objective function value (ie, we do not have an
Hamiltonian cycle yet, hence its length is not a valid objective function value). 7

Partial vs Complete and Infeasible vs Feasible

The previous guiding rules are often broken:

- Constructive search on partial sols and local search on complete sols not always true

- Partial vs Complete # Infeasible vs Feasible

For example in the Graph Vertex-Coloring different choices for candidate solutions are
used in local search algorithms (last column indicates the frequency in the literature):

k-fixed
k-fixed
k-fixed
k-fixed
k-variable
k-variable
k-variable
k-variable

complete
partial
complete
partial
complete
partial
complete
partial

proper
proper
unproper
unproper
proper
proper
unproper
unproper

So don’t take me too rigidly in this organization! :)

A Search Problem

Definition (Search or Optimization Algorithm)

Goal formulation: we want to find the minimum with respect to some criterion from a
set of candidate elements.

Problem formulation: Given a description of the states, an initial state and actions
necessary to reach the goal, find a sequence of actions to reach the goal.

Search: the algorithm simulates sequences of actions in the model of the goal,
searching until it finds a sequence of actions that reaches the goal.

The algorithm might have to simulate multiple tentative answers that do not meet the
goal, but eventually it reaches a solution, or it will find that no solution is possible.

Components of a Search Algorithm (1)

(valid for complete or heuristic and constructive or perturbative algorithms)
e State or (Candidate) solution: a definition of the states of the search
e Search Space: A set of possible states that the search can be in.
¢ Initial State: State the search starts in.

® Goal: A set of one or more goal states. Sometimes there is one goal state
sometimes there is a small set of alternative goal states

¢ Evaluation function f(s): assesses the distance from a potential goal.
(note: different from “objective”, it can also include penalties due to constraint
violations).

20

Components of a Search Algorithm (2)

® Action Type t: available to the algorithm. Neighborhood
* Afinite set of actions of type t that can be executed in s, Actions(t, s). Move

® A transition model that describes what each action does. Result(s, a) returns the
state that results from doing action o € Actions(t, s) in state s. Apply Move

® An action-cost function, Action-Cost(s, a,s’), that gives the numeric cost of
applying action o in state s to reach state s’. Increment

21

ROAR-NET Application Programming Interface (API) <"\

,]/,E,<

(Note: Here not meant as Web API, network-based API, or REST API.)

The ROAR-NET API Specification is the definition of an interface or protocol between
optimization problems seen as black box and their solvers in order to facilitate
understanding, reusing and scaling of solution approaches.

We look for a model that
e . allows one to use off the shelf components to solve it.

® . assumes a separation between problem specifics and solver.

e _ is designed as a software interface offering a service to other pieces of software
and is implemented by the user.

® . promotes reusability of software components and minimizes the user’s effort to
deploy a solution for the specific optimization problem at hand.

® . maximizes code extensability, reusability, and simplicity.

22

The Full API

Types
Problem
Solution

Value

Increment
PreferenceModel
Neighborhood
Move

Operations on Problem
empty_solution
random_solution
heuristic_solution

Operations on Solution
objective_value
lower_bound
copy_solution

Operations on Neighborhood
local_neighbourhood
construction_neighbourhood
destruction_neighbourhood
sub_neighbourhoods

https://github.com/roar-net/roar-net-api-spec

Operations on Move

moves

random_move
random_moves_without_replacement
lower_bound_increment
objective_value_increment
apply_move

invert_move

Operations on PreferenceModel

scalarisation

better_or_indifferent # preorder
better # strict preorder
indifferent # equivalence
incomparable

compare_total_order
compare_partial_order
selection # Indices

ranking # Rank/class values .

https://github.com/roar-net/roar-net-api-spec

Outline

® Solving Problems by Complete Search
Dynamic Programming
Tree Search
Optimization Problems
Backtracking
Branch and Bound

28

Outline

® Solving Problems by Complete Search
Dynamic Programming

29

Dynamic Programming (DP)

® Applied to problems with optimal substructure and overlapping subproblems

® Optimal substructure means an optimal solution can be constructed from optimal
solutions to its subproblems

e Overlapping subproblems means solving each subproblem separately requires
repeating certain operations

® DP begins with desired problem and recurses down to smaller and smaller
subproblems, retrieving the value of previously solved problems as necessary

e Principle of Optimality (known as Bellman Optimality Conditions): Suppose that the
solution of a problem is the result of a sequence of n decisions Dy, Ds, ..., Dy; if a
given sequence is optimal, then the first k decisions must be optimal, but also the
last n — k decisions must be optimal

32

Knapsack Problem

® | et the V(/,w) (the so-called value function) be the maximum value achievable
using the first / items and a knapsack capacity w.

® Consider the /th item. You can either use it or not.
® |f you don’t use it, then the value of your knapsack will be

V(i —1,w)

® |f you use it, then the value of your knapsack will be

V(i—1,w—w)+v

35

The Recursion

® For each item / and weight w:
0 ifi=0

ifw, <w

. B V(i—1,w) (discard new item)
V(i,w) = { max)))
V(i—1,w—w;)+v (include new item)

V(i—1,w) ifw; > w

e Optimal solution:
¥ =V(n,W)

and trace back to find the items collected.

36

Visual Representation

o] o] p=12 O o) b=12
(o] (o] b=11 Q Q b=11
o o b=10 QO fo) @ b=10
o] o] p=9 o o) O b=9
o o b=8 0 o) O b=8
o o] b=7 o) o) O b=7
o] o] b=6 o) o) O b=6
o o b=5 o) o) O b=s
o] o b=4 o) o) (o) O b=4
o] o] b=3 (@) o) O O b=3
o AL Ld e o LA o ou

b=0 fo) fo) O b=0
i=0 =t Q=2 =3 =4 =0 i=1 i=2 =3 i=4

37

SMTWT Problem

® 1|| > hi(C) generalization of)~ w;7; (strongly NP-hard)

¢ (Forward) dynamic programming algorithm that runs in O(2")

J set of jobs already scheduled;

V(J) = >, hi(C) the value of a sequence of the jobs in J;

Step 1: Set J =0, V*({/}) = V({}) = (o), J=1,....n
Step 20 V*(J) = minje, (V*(J — {j}) + h; (3,2, px)) best value of the set of jobs in J;

Step 3: If J={1,2,....n} then V*({1,2,...,n}) is optimum,
otherwise go to Step 2.

45

Traveling Salesman Problem

The TSP asks for the shortest tour that starts from 0, visits all cities of the set
C ={1,2,...,n} exactly once, and returns to O, where the cost to travel from/ to/ is ¢;
(with (/,)) € A)

If the optimal solution of a TSP with six cities is (0,1, 3,2, 4,6, 5,0), then...

® the optimal solution to visit {1,2,3,4,5,6} starting from O and ending at 5 is
(0,1,3,2,4,6,5)

the optimal solution to visit {1,2, 3,4, 6} starting from 0 and ending at 6 is
(0,1,3,2,4,6)

® the optimal solution to visit {1, 2, 3,4} starting from 0 and ending at 4 is (0, 1, 3,2,4)
® the optimal solution to visit {1, 2, 3} starting from 0 and ending at 2 is (0, 1, 3, 2)
® the optimal solution to visit {1, 3} starting from 0 and ending at 3 is (0, 1, 3)

® the optimal solution to visit 1 starting from O is (0, 1)

The optimal solution is made up of a number of optimal solutions of smaller
subproblems a7

Enumerate All Solutions of the TSP

e A solution of a TSP with n cities derives from a sequence of n decisions, where the
kth decision consists of choosing the kth city to visit in the tour

- 1/
tage 2\ \
e«
4 56 3 56 4 56
5/\6 5/\6 5/\6
6 5 tls ,l, els l

W L\ =)

Stage

[2)
IS

tage

® The number of nodes (or states) grows exponentially with n
* At stage k, the number of states is (})k!
® With n = 6, at stage k = 6, this yeilds 720 states

48

Are All States Necessary?

tage

1/ :
2/ \34 5 6 1 \ e

tage

tage 3 2

[3)] B W) N (=]

/. . e s

tage 4 5 6 3 5 6 4 5 6 2 5 6 4 5 6 3 5 6 4 5 6 1 5 6
A BN A e .
tage 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6
e Bl
Stage6] 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5

If path (0,1, 2,3) costs less than (0,2, 1, 3), the optimal solution cannot be found in the
blue part of the tree

49

Are All States Necessary?

Stage 1 1/ SRR SN 6
Stage 2| /2\/ N\\/:;is " /1 \/ \‘\\/BKS .
3 . < e . .
e e e
4 56 3 56 4 56 2 56 4 56 3 56 4 56 1 56
/\ /\ /\ /\ /\ /\ /\ /\
5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6
e P E L]
Stage 6] 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5
If path (0,1,2,3,4,5) costs less than (0, 1,2,4, 3,5), the optimal solution cannot be found

in the blue part of the tree

50

Are All States Necessary?

® At stage k (1 < k < n), for each subset of cities S C C of cardinality k, it is necessary
to have only k states (one for each of the cities of the set S)

® At state k = 3, given the subset of cities S = {1, 2, 3}, three states are needed:
® the shortest-path to visit S by starting from 0 and ending at 1
® the shortest-path to visit S by starting from 0 and ending at 2
® the shortest-path to visit S by starting from 0 and ending at 3

* At stage k, (}/)k states are required to compute the optimal solution (not (})k!)

#Statesn =6
Stage (k! ()k
1 6 6
2 30 30
3 120 60
4 360 60
5 720 30
6 720 6

51

Complete Trees with n=4

Enumeration of all paths

()

[92)
— — —
]]]
«Q Q Q
[[[
- o

1 4
S 2 2/C|’:\4 1/3\4 1/i\4 1/4\3
AN AN R R e N A AN B L Y
3 4 2 4 2 3 3 41 41 3 2 41 41 2 2 3 1 3 1 2
= 0

Implicit enumeration of all paths
/0\
1 2 3 4
/£\4 1/é\4 1/£\4 1/£\3

2
|

Q |9

@ @ @ @ 208

o |8 |8 S 8
| || @

o| o [of [® & |w
w [N |2 (o

w

tag

[)
=
Q
Q

(0]

IN

Dynamic Programming Recursion for the TSP (1/2) SN

\/]/ <

® Given a subset S C C of cities and k € S, let V(S, k) be the optimal cost of starting
from 0, visiting all cities in S, and ending at k

® Begin by finding V/(S, k) for |S| = 1, which is V({k},k) = cox,Vk € C

® To compute V(S, k) for [S| > 1, the best way to visit all cities of S by starting from 0

and ending at k is to consider all j € S\ {k} immediately before k, and look up
V(S\ {k}.j), namely

V(S.k) = min (V(S\ {k}.J) + o}

{1}.1

0
@).2 (s»a\(A .
PN

{1212 {L3}3_ {Lah4__{L2h1 {23}3_ {24h4{13}1 {23}2 {3.4}4 _{14}1 {24}2 {3.4}3

{12,313 7 {1.2.4},4 _{1,2.3},27{1,3,4},4 _{1,2.4},27 (1.3.4}.3 {123}, 1 {2.3.4}.4 _{1.2.4}.1 {2.3.4}.3_{13.4},1 {23.4}.2

{1.2.3,4},4 {1.2,3,4),3 {1.2,3,4),2 {1.2,3,4),1

® The optimal solution cost z* of the TSP is z* = minkec{V(C,k) + Cko}

Dynamic Programming Recursion for the TSP (2/2) &N\

\,

More schematically, DP for TSP [Held and Karp (1962)]:

1.

2.

Initialization. Set V({k},k) = co, foreach k € C

Recursive Step. For each stage r = 2,3, ...,n, compute

V(S k)= rg\i&}{\/(s \{k}.j)+ci}t forallSCC:|S|=randforallkeS
Jje

Optimal Solution. Find the optimal solution cost z* as

Z* =min{V(C, k) + Cxo}
keC

With DP, TSP instances with up to 25-30 nodes can be solved to optimality; other
solution techniques (i.e., branch-and-cut) are able to solve TSP instances with up to
85,900 customers

Nonetheless, DP represents the state-of-the-art techniques to solve a wide variety of
search problems

Outline

® Solving Problems by Complete Search

Tree Search

56

Complete Graph Search Methods

Tree (or graph) search in

Uninformed settings Informed settings
® Breadth-first search ® Greedy best-first search
® Uniform-cost search ® A* search

® Depth-first search

Complete Tree Search

For CSPs with n variables and d values, we can use a complete tree search with

Search Space

Tree with branching factor at the top level nd
at the next level the branching factor is (n — 1)d.
The tree has n! - d" leaves even if only d” possible complete assignments.

® CSP is commutative in the order of application of any given set of action
(i.e., we reach same partial solution regardless of the order)

® Hence, generate successors by considering possible assignments for only a single
variable at each node in the search tree. The tree has now d" leaves

® use information: look-ahead, best first, etc.

58

Outline

® Solving Problems by Complete Search

Optimization Problems

59

Exploiting Information

Assessment of partial, infeasible solutions

The priority assigned to a node x is determined by the function
f(x) = 9(x) +h(x)

g(x): cost of the path so far
h(x): heuristic estimate of the minimal cost to reach the goal from x.

e dreedy best-first search uses h to decide

® A* best-first search uses 7 and is cost-optimal when reaches the goal, if h(x) is an

® admissible heuristic: never overestimates the cost to reach the goal
e consistent: h(n) < c(n,a,n") +h(n")
(consistent = admissible, only necessary in graph search)

60

Best-First Search

Procedure TreeSearch(start, target)

add start to visited

add start to queue

while queue is not empty do

current_node < vertex of queue with min distance to target®
remove current_node from queue

for each neighbor n of current_node do

if n not in visited then

if nis target then
| returnn

else
mark n as visited
add n to queue

return failure

?Greedy best-first: min distance to target = h(n);

A* best-first: min sum of distance so far and distance to target = 7(n)
61

Example

Find shortest path from Arad to Bucharest:

Arad

118

Eforie

Craiova Giurgiu

Right: The tree explored by A* search

[P. Norvig and N. Russel, Al: A Modern Approach, 4th ed., 2020]

(a) The initial state
Prarr

(b) After expanding Arad G
>Cibin > Q

140253 [l

(¢) After expanding Sibiu

P e

Chand D> Gagard> T
646-2501366 415-2391176 671-291 1380 13-2201193

(d) After expanding Rimnicu Vilcea

Tmisoard erind>
P pre= st

Gl Db Gz
646-250+366 415-239+176 671-291+380

o>
203060100 47510 553000253

(¢) Afier expanding Fagaras

oo
[l Premest

4207366 e=291-380

a
SOI338253 45043040 S26-366+160 41731100 533-300:253

(1) After expanding Pitesti

q
447118329 449751374

616280366
P 553300253

s =
ANATSAD 6154550160 67414193

62

Heuristic Functions

Possible choices for admissible heuristic functions in A* search:

e optimal solution to an easily solvable relaxed problem
e optimal solution to an easily solvable subproblem

® learning from experience by gathering statistics on state features

preferred heuristic functions with higher values (provided they do not overestimate)
e if several heuristics available hy, hs, ..., h, and not clear which is the best then:

h(x) = max{h1(x), ..., hm(x)}

63

A Star Search

Drawbacks:

® Time complexity: In the worst case, the number of nodes expanded is exponential,
(but it is polynomial when the heuristic function h meets the following condition:

[h(x) = h*(x)| < O(logh™(x))

h* is the optimal heuristic, the exact cost of getting from x to the goal.)

® Memory usage: In the worst case, it must remember an exponential number of
nodes.

Several variants: including iterative deepening A* (IDA*), memory-bounded A* (MA*)
and simplified memory bounded A* (SMA*) and recursive best-first search (RBFS)

64

Outline

® Solving Problems by Complete Search

Backtracking

65

Dealing with Constraints

Backtracking search

Depth-first search that chooses one variable at a time and backtracks when a variable
has no feasible values left to assign.

® No need to copy solutions all the times but rather extensions and undo extensions

® Since CSP is standard then the algorithm (initial state + successor function + goal
test) is also standard = general purpose solvers

e Backtracking is uninformed and complete. Other search algorithms may use
information in form of heuristics.

66

Informed Search with Constraints

Which variable should we assign next, and in which order should its values be tried?

® SELECT-INITIAL-UNASSIGNED-VARIABLE

® SE|ECT-UNASSIGNED-VARIABLE
® most constrained first = fail-first heuristic
= Minimum remaining values (MRV) heuristic
(tend to reduce the branching factor and to speed up pruning)
® |east constrained last

Eg.. max degree, farthest, earliest due date, etc.

® ORDER-DOMAIN-VALUES
® greedy
® |east constraining value heuristic

(leaves maximum flexibility for subsequent variable assignments)
® maximal regret

implements a kind of look ahead

68

Outline

® Solving Problems by Complete Search

Branch and Bound

70

Branch and Bound

LIST < {S};
ub <+ value of some heuristic solution;
current_best < heuristic solution;
while LIST # () do
Choose a branching node k from LIST;
Remove k from LIST;
Generate child; of k, for i = 1,...,ny, and calculate corresponding lower bounds (b;;
for /=1 ton, do
if (b, < ub then
if child; consists of a feasible solution then
ub + lbj;
current_best <— solution corresponding to child;;
else
| add child) to LIST;

S root of the branching tree

else
| prune;

Pruning happens: (i) by bound (ii) by optimality (i) by infeasibility

72

Branch and Bound

Branch and bound vs Backtracking
= a state space tree is used to solve a problem.

= branch and bound does not limit us to any particular way of traversing the tree
(backtracking is depth-first)

= branch and bound is used only for optimization problems.

Branch and bound vs A*
= In A* the admissible heuristic mimics bounding
In A* there is no branching. It is a search algorithm.

#+ A” is best first

73

Branch and Bound: Strategies

[Uens Clausen (1999). Branch and Bound Algorithms
- Principles and Examples.]

® Eager Strategy:

1. select a node

2. branch

3. for each subproblem compute bounds and compare with incumbent solution
4. discard or store nodes together with their bounds

(Bounds are calculated as soon as nodes are available)

® Lazy Strategy:
1. select a node
2. compute bound
3. branch
4. store the new nodes together with the bound of the father node

(often used when selection criterion for next node is max depth)

74

Branch and Bound: Components

1. Initial feasible solution (heuristic) — might be crucial!
2. Bounding function

3. Strategy for selecting

4. Branching

5. Fathoming (dominance test)

75

Branch and Bound: Bounding Techniques

. mingep () .
mpo(s) < { mnrch o) | < o

P: candidate solutions; S C P feasible solutions

Techniques:
® Linear programming
® Combinatorial relaxation
® | agrangian relaxation
® Duality

should be polytime and tight (trade off)

76

Branch and Bound: Search Strategy

Strategies for selecting the next subproblem:

® best first
(combined with eager strategy but also with lazy)

® pbreadth first
(memory problems)

® depth first
works on recursive updates (hence good for memory)
but might compute a large part of the tree which is far from optimal
(enhanced by alternating search in lowest and largest bounds combined with
branching on the node with the largest difference in bound between the children)
(it seems to perform best)

7

Branch and Bound: Branching

e dichotomic

® polytomic

78

Outline

@ Solving Problems by Incomplete Search
Incomplete Search Ideas
Construction-Based Metaheuristics

81

Outline

@ Solving Problems by Incomplete Search
Incomplete Search Ideas

82

Greedy Algorithms

Algorithms based on incomplete versions of greedy best-first search perform a
single descent in the search tree.

They always expand the current state and does not maintain an open set (frontier)

Strategy: always make the choice that is best at the moment

® Sometimes, they guarantee the optimal solution: Minimum Spanning Tree, Single
Source Shortest Path, etc.)

87

Greedy Algorithms in the ROAR-NET API

def greedy_construction(problem, solution):
neigh = problem.construction_neighbourhood()
if solution is None:
solution = problem.empty_solution()
move_iter = iter(_valid_moves_and_increments(neigh, solution))
move_and_incr = next(move_iter, None)
while move_and_incr is not None:
best_move, best_incr = move_and_incr
for move, incr in move_iter:
if incr < best_incr:
best_move, best_incr = move, incr
if incr ==
break
solution = best_move.apply_move(solution)
move_iter = iter(_valid_moves_and_increments(neigh, solution))
move_and_incr = next(move_iter, None)
return solution

def _valid_moves_and_increments(neigh, solution):
for move in neigh.moves(solution):
incr = move.objective_value_increment(solution)
yield (move, incr) if incr < O else continue

Incomplete Search

On the backtracking framework
(beyond depth-first search)

Bounded backtrack
Credit-based search

Limited Discrepancy Search
Barrier Search

Randomization in Tree Search

Random Restart

Outside the exact framework
(beyond greedy search)

® Random Restart
Rollout/Pilot Method

® Beam Search

Iterated Greedy
GRASP

(Adaptive Iterated Construction Search)

® (Multilevel Refinement)

91

Bounded Backtrack

Bounded-backtrack search:

bbs(10)

Depth-bounded, then bounded-backtrack search:

dbs(2, bbs(0))

Visualizations by Helmut Simonis

92

Credit-Based Search

Initial Credit 2

® Key idea: important decisions are at the
top of the tree

Credit Search

¢ Credit = backtracking steps

e Credit distribution: one half at the best
child the other divided among the other
children.

® \When credits run out follow
deterministic best-search

¢ |n addition: allow limited backtracking
steps (eg, 5) at the bottom

e Control parameters: initial credit,
distribution of credit among the
children, amount of local backtracking
at bottom.

93

Limited Discrepancy Search

® Key observation that often the heuristic
used in the search is nearly always
correct with just a few exceptions.

® Explore the tree in increasing number of
discrepancies, modifications from the
heuristic choice.

® Eg: count one discrepancy if second
best is chosen
count two discrepancies either if third
best is chosen or twice the second best
is chosen

¢ Control parameter: the number of
discrepancies

94

Randomization in Tree Search

Idea: important decisions are made up in the search tree (backdoors - set of variables
such that once they are instantiated the remaining problem simplifies to a tractable form)
~ random selections + restart strategy

Random selections

e randomization in variable ordering:
® breaking ties at random
use heuristic to rank and randomly pick from small factor from the best
random pick among heuristics
random pick variable with probability depending on heuristic value

® randomization in value ordering:
® just select random from the domain

Restart strategy with different budget in backtracking (if kept running it becomes
complete)

® Example: B=(1,1,2,1,1,2,4,1,1,2,1,1,4,8,1,...)

96

Outline

@ Solving Problems by Incomplete Search

Construction-Based Metaheuristics

97

Rollout/Pilot Method

Derived from A*

® Master process adds components sequentially to a partial solution S, = (s1,Sa, ... Sk)

e At the kth iteration the master process evaluates feasible components to add based
on a heuristic look-ahead strategy.

® The evaluation function H(Sk. 1) is determined by sub-heuristics that complete the
solution starting from Sy

® Sub-heuristics are combined in H(Sk.1) by

® weighted sum
® minimal value

Note: this evaluation does not need to be a lower bound!

98

Rollout/Pilot Method

Speed-ups:
® halt whenever cost of current partial solution exceeds current upper bound
® evaluate only a fraction of possible components

99

Beam Search

Based on the tree search framework:
® maintain a set B of bw (beam width) partial candidate solutions
® at each iteration extend each solution from B in fw (filter width) possible ways
® rank each bw x fw candidate solutions and take the best bw partial solutions
e complete candidate solutions obtained by B are maintained in By

® stop when no partial solution in B is to be extended

100

Visualization of Beam Search

Three phases of Beam Search illustrated with beam width bw = 3 and expansion factor
bf = 2. [Choo, Jinho et al. 2022]

101

https://paperswithcode.com/paper/simulation-guided-beam-search-for-neural

Greedy Randomized Adaptive Search Procedure

Greedy Randomized ”Adaptive” Search Procedure, aka, GRASP
Key Idea: Combine randomized constructive search with subsequent local search.

Motivation:

e Candidate solutions obtained from construction heuristics can often be substantially
improved by local search.

® | ocal search methods often require substantially fewer steps to reach high-quality
solutions when initialized using greedy constructive search rather than random
picking.

® By iterating cycles of constructive + local search, further performance improvements
can be achieved.

102

Procedure GRASP();
while termination criterion is not satisfied do
generate candidate solution s using subsidiary greedy randomized
constructive search;
perform subsidiary local search on s ;

e Randomization in constructive search ensures that a large number of good starting
points for subsidiary local search is obtained.

e Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
a given partial candidate solution may depend on
solution components present in it.

e Variants of GRASP without local search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with local search.

103

e Fach step of constructive search adds a solution component selected uniformly at
random from a restricted candidate list (RCL).

® RCLs are constructed in each step using a heuristic function h.

® RCLs based on cardinality restriction comprises the k best-ranked solution

components.
(k is a parameter of the algorithm.)

® RCLs based on value restriction comprise all solution components # for which
h(() S hmin + - (hmox - hmm),
where hyin = minimal value of h and hyex = maximal value of h for any /.
(cv is a parameter of the algorithm)

® Possible extension: reactive GRASP (dynamic adaptation of a during search)

104

A GRASP Example: Squeaky Wheel

Key idea: solutions can reveal problem structure which maybe worth to exploit.

Use a greedy heuristic repeatedly by prioritizing the elements that create troubles.

Squeaky Wheel
® Constructor: greedy algorithm on a sequence of problem elements.

® Analyzer: assign a penalty to problem elements that contribute to flaws in the
current solution.

® Prioritizer: uses the penalties to modify the previous sequence of problem
elements. Elements with high penalty are moved toward the front.

Possible to include a local search phase between one iteration and the other

105

Iterated Greedy

Key idea: use greedy construction
® alternation of construction and deconstruction phases

® an acceptance criterion decides whether the search continues from the new or from
the old solution.

Procedure Iterated Greedy;
determine initial candidate solution s;
while termination criterion is not satisfied do
r+s;
(randomly or heuristically) destruct part of s;
greedily reconstruct the missing part of s;
based on acceptance criterion, keep s or revert to s < r

[Hoos, Stutzle, SLS FA, 2004]

106

Very Large Scale Neighborhood Algorithms

® | ocal search algorithms typically explore small neighborhoods of a solution. Very
large scale neighborhood (VLSN) algorithms are a generalization to large
neighborhoods that can be searched efficently.

e Algorithms that proceed by iteratively destroying and repairing a solution can be
seen as performing a neighborhood search in a large neighborhood as well.
® Examples of this kind are:
® |terated greedy

® | arge Neighborhood Search (LNS) proposed by [Shaw, 1998] use constraint programming
to reconstruct a solution after destroying part of it.

® Adaptive Large Neighborhood Search (ALNS) [Rgpke and Pisinger, 2006]

107

Large Neighborhood Search (LNS)

input: a feasible solution x d() destruction (destroy) method
¥ = r() reconstruction (repair) method
repeat

(d(x));

1f accept(,x) then
X=u:
end if
if c(x') < c(x”) then
=l

end if
until stopping criterion is met
return x”

The LNS metaheuristic does not search the entire neighborhood of a solution, but merely
samples this neighborhood.

109

Large Neighborhood Search (LNS)

Acceptance criterion:

® always

e only if better

® record-to-record travel
(acceptif 7(s') < (1 +€)f(sp))

e threshold accepting (Metropolis
criterion)

® simulated annealing criterion

Degree of destruction

® gradually increase
e randomly chosen from a specific range
dependent on the instance size
To guarantee connectivity, it must be

possible to destroy every part of the
solution.

Repair method:

® problem-specific heuristic

® exact method

® general purpose mixed integer
programming (MIP) (aka, fix and
optimize)

® constraint programming solver
(aka, fix and optimize)

It should allow diversification

110

Adaptive Large Neighborhood Search (ALNS)

Key Idea: allow multiple destroy and repair methods controlling with an adaptive
weighting system how often a particular method is attempted during the search [Raopke,
Pisinger, 2006]

input: a feasible solution x
e N I, L R, |
repeat
select destroy and repair methods d € Q~ and r € Q" using p~ and p™;
X =r(dx));
if accept(x’,x) then
Xi=x;
end if
if c(x') < c¢(x") then
=
end if
update p~ and p™;
until stopping criterion is met
return x”

m

Adaptive Large Neighborhood Search (ALNS)

Selection mechanism: roulette wheel principle:
7
> Pr
keQ—

Update mechanism:

wy if the new solution is a new global best
T wy if the new solution is better than the current one
= Imax
wsz if the new solution is accepted
L

wy if the new solution is rejected
with normally wy > ws > w3 > wy > 0. Only accepted o and b are updated:
pg =g +(1=NT, pf=Xpf + (1= NV

A € [0,1] is a decay parameter

12

ALNS: Design Choices

Destroy methods:
e diversification: random destroy method.

e intensification: remove g “critical” variables, i.e. variables having a large cost or
variables that spoil the current structure of the solution (e.g. edges crossing each
other in an Euclidean TSP). This is known as worst destroy or critical destroy.

¢ related destroy: select a set of customers that have a high mutual relatedness
measure. Eg on the CVRP, relatedness measure between each pair of customers is
distance between the customers (and it could include customer demand)

¢ history based destroy: g variables are chosen according to some historical
information,

Repair methods:

greedy heuristics, problem specific

include local search

exact algorithms

mixed integer programming (aka, matheuristic)

constraint programming 3

ALNS: Design Choices

Large multiple-neighborhood search (LMNS) heuristics: It may be sufficient to have a
number of destroy and repair heuristics that are selected randomly with equal
probability, that is, without the adaptive layer.

Same robustness as ALNS heuristics, while fewer parameters to calibrate.

114

ALNS: Other Relations

® Variable Neighborhood Search

Portfolio Algorithms

Hyperheuristics

Reinforcement learning

15

Adaptive Iterated Construction Search (AICS)

Key Idea: Alternate construction and local search phases as in GRASP, exploiting
experience gained during the search process.

Realisation:
® Associate weights with possible decisions made during constructive search.
® |nitialize all weights to some small value 7y at beginning of search process.

e After every cycle (= constructive + local search phase), update weights based on
solution quality and solution components of current candidate solution.

116

Adaptive Iterated Construction Search (AICS)

Procedure AICS();
initialise weights;
while termination criterion is not satisfied do
generate candidate solution s using subsidiary randomized constructive
search;
perform subsidiary local search on s;
adapt weights based on s;

7

AICS: Components

Subsidiary constructive search:

® The solution component to be added in each step of constructive search is based
on:
i) weights and
i) heuristic function h.

® /) can be standard heuristic function as, e.g., used by
greedy heuristics

e |t is often useful to design solution component selection in constructive search such
that any solution component may be chosen (at least with some small probability)
irrespective of its weight and heuristic value.

18

AICS: Components

Subsidiary local search:

® As in GRASP, local search phase is typically important for achieving good
performance.

® Can be based on Iterative Improvement or more advanced LS method (the latter
often results in better performance).

® Tradeoff between computation time used in construction phase vs local search
phase (typically optimized empirically, depends on problem domain).

19

AICS: Components

Weight updating mechanism:

® Typical mechanism: increase weights of all solution components contained in
candidate solution obtained from local search.

® Can also use aspects of search history;
e.g., current candidate solution can be used as basis for
weight update for additional intensification.

120

Example: A simple AICS algorithm for the TSP (1/2) SN\,

[Based on Ant System for the TSP, Dorigo et al. 1991]

e Search space and solution set as usual (all Hamiltonian cycles in given graph G).
However represented in a construction tree 7.

® Associate weight 7; with each edge (/,/) in G and T
® Use heuristic values 7; := 1/w;.
® |nitialize all weights to a small value 7, (parameter).

e Constructive search start with randomly chosen vertex
and iteratively extend partial round trip 7 by selecting vertex
not contained in 7 with probability

(7] - [5]”
> ien iyl - [my]?

Pr(m) =

121

Example: A simple AICS algorithm for the TSP (2/2) &N\

\,

e Subsidiary local search = typical iterative improvement
® \Weight update according to
7= (1= p) -7+ A7, S)

where A(i,j,s") := 1/f(s), if edge jj is contained in
the cycle represented by s/, and 0 otherwise.

® Criterion for weight increase is based on intuition that edges contained in short
round trips should be preferably used in subsequent constructions.

® Decay mechanism (controlled by parameter p) helps to avoid unlimited growth of
weights and lets algorithm forget past experience reflected in weights.

® (Just add a population of cand. solutions and you have
an Ant Colony Optimization Algorithm!)

122

Summary

@ 'ntroduction
@ The ROAR-NET API
® Solving Problems by Complete Search

@ Solving Problems by Incomplete Search

123

Acknowledgments

This presentation is based upon work fromm COST Action Ran-
domised Optimisation Algorithms Research Network (ROAR-NET),
CA22137, supported by COST (European Cooperation in Science and
Technology).

COST (European Cooperation in Science and Technology) is a funding
agency for research and innovation networks. Our Actions help connect
research initiatives across Europe and enable scientists to grow their ideas
by sharing them with their peers. This boosts their research, career and in-
novation.

’) Funded by
' the European Union

EUROPEAN COOPERATION
IN SCIENCE & TECHNOLOGY

124

	Introduction
	The ROAR-NET API
	Solving Problems by Complete Search
	Dynamic Programming
	Tree Search
	Optimization Problems
	Backtracking
	Branch and Bound

	Solving Problems by Incomplete Search
	Incomplete Search Ideas
	Construction-Based Metaheuristics

