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Outline

e Modelling

* Decision space

e Solution structure
 Construction rules
e Solution quality

e Bounds
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Modelling

Modelling a combinatorial optimization problem as a constructive search problem begins with asking
and answering a few questions

Problem instance What (known) data is required to fully characterize an instance of the problem?
Solution What (unknown) data is required to fully characterize a (feasible) solution?

Objective function How can the performance of a given candidate solution be measured? Is the cor-

responding value to be minimized or maximized?
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Modelling

Combinatorial structure What is a partial or incomplete solution?

* Solutions as subsets of a larger ground set of solution components
* Partial solutions as a representation of all feasible solutions that contain them
* Not all subsets of components are valid (partial) solutions
> Construction rule
» Performance of partial solutions inferred from the sets of solutions which they represent

> Lower bound (minimization) or upper bound (maximization)
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Decision space

What (unknown) data is required to fully characterize a (feasible) solution?

» A possible representation of the feasible solutions is given by the solution output format in the

problem description
* In general, such a representation is not unique
e It is often redundant: the same solution may be output in different ways

/\ The solution output format may or may not be the most appropriate representation to support

the solving process!
The decision space is the set of all candidate solutions that may be visited during the solving process
* Both feasible and infeasible solutions may be included

* Infeasible solutions have no objective value
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Decision space

Example

Supose that an agent is placed on a maze defined on a rectangular grid and can travel the maze by
making a sequence of single steps N, S, E, W. Banging on walls is not allowed. Each cell provides
either a reward or a penalty and can be visited only once. Starting from a given cell, (5,5), the goal is

to collect as much reward as possible and then stop.

* A given solution might be represented as a sequence of moves, such as

(N,E,E,S,S,W,W,W,§,W, W)

* Alternatively, it might be represented as a sequence of visited cells

[(5,5),(6,5),(6,6),(6,7),(5,7),(4,7),(4,6),(4,5), (4,4),3,4),(3,3),(3,2)]
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Decision space

Other alternatives

¢ A set of visited cells?

15,9),(6,5),(6,6),(6,7),(5,7),(4,7),4,6),(4,5),(4,4),(3,4),(3,3),(3,2)}
* A set of position-cell pairs?

{(0,(5,5)),(,(6,5)),(2,(6,6)),(3,(6,7)),(4,(5,7),(5,4,7),(6,4,6)),(7,(4,5), (8, (4,4),

9,3,4)),(10,(3,3)),(11,(3,2))}

» A set of cell pairs, or a subset of arcs of the directed graph representing the moves allowed?

{((5,5),(6,9)), ((6,5), (6,6)), ((6,6), (6, 7)), ((6,7),(5,7)),((5,7),4,7)),((4,7), (4,6)),

((4,6),(4,5)),((4,5), (4,4)),((4,4), (3,4)), ((3,4), (3,3)),((3,3), (3,2))}
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Decision space

Discussion

» The step-sequence representation is more compact, but the same N, S, E, or W step has a different

effect on the score depending on its position on the sequence

* In contrast, in the cell-sequence representation, the contribution of a given cell to the score does

not depend on where in the sequence it appears
* The cell-set may or may not uniquely define the path

» The position-cell pair representation uniquely defines the path, but the absolute position of a cell

in the path is irrelevant to the score

* In the cell-pair representation, only the second cell in each pair contributes to the score. The

cell-sequence representation encodes the same information and is more compact
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Solution structure

In general, the solutions of combinatorial optimization problems can be understood as subsets of a

larger set of components, the ground set
e Unified modelling of combinatorial optimization problems

* Feasible solutions are subsets of components, but not all component subsets represent feasible

solutions
 Constraints on the joint presence of certain components in a solution

* Relation between solution quality and the components, or combinations of components, in a

solution

= Solving the problem by learning which (combinations of) components lead to good solutions!
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Solution structure

Constructive-search methods build solutions by successively adding components to the empty set
e The number of components in a feasible solution is usually constrained from above

* Depending on the problem, it may also be constrained from below

= The decision space may (have to) include infeasible solutions with fewer components than re-

quired for a solution to be feasible

¢ Solutions are called:

— Partial or incomplete, if more components can still be added to them, and complete otherwise

— Feasible, if they satisfy the constraints of the problem, and infeasible otherwise

In general, both partial and complete solutions may be feasible or infeasible. The decision space is

usually such that complete solutions are feasible, but that is not always the case
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Solution structure

Partial solutions may be interpreted in two complementary ways

1. As extending the decision space in order to allow the construction of feasible solutions (when

partial solutions are themselves infeasible)

2. As arepresentation of the sets of feasible solutions that can be constructed by adding components

to them (whether they are themselves feasible or infeasible)

The second interpretation can be extended further by allowing certain components to be excluded

from those that can be added to a solution in order to complete it
* Solutions are augmented with a set of forbidden components
 When components are forbidden, infeasible complete solutions may arise

 Support for effective decision-space subdivision, as required by Branch and Bound
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Construction rules

Consider a ground set ¥, a (possibly augmented) decision space Q < 29, a solution s € Q, and a

component ¢ € 4
e If c¢ sand suU {c} € Q, then a new solution r = sU {c} can be constructed by adding c to s

» The reverse is also possible: if c € s and s\ {c} € (2, then a new solution r = s\{c} can be constructed

by removing c from s
» This imposes a neighbourhood structure on the decision space Q
* Moving from one solution to another by adding or removing a component is called a move

e Solution construction consists in traversing the decision space from the empty solution to any

feasible solution by successively adding components

e The construction path from one solution to another may not be unique

I||
i 12

12 Llﬁ! 90 LNI\LR\I[)\[)LI) HH
e COIMBRA



Construction rules

The solution construction process is determined by
» The decision space and the associated neighbourhood structure

» Additional restrictions to which paths can be followed from one solution to another

Example

Building symmetric Travelling Salesman tours
Decision space Partial solutions may consist of

A. Degree-2 trees

B. Degree-2 forests

Additional restriction Degree-2 trees may or may not have to have a degree-1 root
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Construction rules

Example

Building knapsack solutions

Decision space Any subset of items with total weight below knapsack capacity is a feasible solution
Additional restriction Items may be added

A. In any order

B. Only in a prescribed order

Note All feasible solutions can be constructed in both cases

|||:::::|" de engen aria 14

i informatica

FACULDADE DE
CIENCIAS E TECNOLOGIA
9 0 UNIVERSIDADE B HH

COIMBRA



Solution quality

The original problem definition should suggest a “natural” means of evaluating solutions
 Relational operator (pairwise comparisons)

e Objective function(s)

* Not all objective functions are good for actually solving the problem

— Computing the objective value may be complicated and/or time consuming

— Bottleneck (or min-max) objectives and simple counts may lead to many ties that make it dif-

ficult to gauge progress

— Objective value landscapes may also be rugged or even deceiving

When the “natural” objective function is insufficient or inappropriate to guide the search, an altern-

ative objective function, or proxy function, should be defined.
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Evaluation of partial solutions

When partial solutions are feasible, the objective function can be used directly to guide construction
* Focus on the quality of the current (partial) solution
e Improve the solution at each construction step (as much as possible)

 Short-sighted approach

Alternatively, and particularly when partial solutions are infeasible, the objective function can also be

used to guide solution construction indirectly
* Focus on the quality of the best possible feasible solution that can be still constructed
 Objective function lower bound (assuming minimization)

 Avoid degrading the bound value at each construction step (as much as possible)

. Forward-looking approach
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Evaluation of partial solutions

When partial solutions are infeasible, the objective function cannot be used directly to guide solution

construction
e Extending the objective function to consider infeasible, partial solutions
— Complete solutions heuristically in order to obtain feasible solutions

— Upper bound values (considering minimization)

— Alternatively, assign heuristic values reflecting (perceived) solution quality

* Considering the quality of the best possible feasible solutions that can be constructed from given
partial solutions
— Lower bound values (considering minimization)

— Also useful when partial solutions are themselves feasible
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Bounds

Obtaining upper and lower bounds (under minimization)
e Upper bounds often involve finding feasible solutions, which may itself be difficult

* Lower bounds refer to how good feasible solutions can possibly be, but do not involve finding

actual solutions
* Bound quality criteria

— Closeness to the true optimal value
— Positive association with the objective function

— Ease of computation

Lower bounds may be obtained in several different ways
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Bounds

Bound functions

e Suppose that the objective function is a combination of terms that depend on the components

present in feasible solutions

 Given a partial solution, only some of the possible terms in a more complete, feasible solution

will be known

» Replace the unknown terms by optimistic values such that the resulting objective function value

cannot be surpassed by any feasible solution

Example - Travelling Salesman Problem (minimization)

» The cost of any tour is equal to half the sum of the costs of the two incident edges of each vertex

* Plugging in the smallest incident edge costs for each vertex still missing edges gives a lower bound
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Bounds

Relaxation

e Suppose that optimal solutions would be easy to construct if some problem constraint(s) could

be ignored (relaxed) during construction
* Solving the relaxed problem exactly may lead to infeasible solutions to the original problem

* The optimal objective value of the relaxed problem is a lower bound for the original problem
(under minimization)
Example - 0-1 Knapsack Problem (maximization)

* The optimal knapsack value is difficult to determine because items must fit in completely

 Allowing items to fit in partially (continuous relaxation) makes the problem easy to solve
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Bounds

Types of constraint relaxation

Continuous relaxation Allowing (some) discrete variables to take continuous values

Simple combinatorial relaxation Simply ignoring some constraints

Surrogate relaxation Reducing the number of constraints by linearly combining some of them
Lagrangian relaxation Linearly combining some constraints with the objective function

In the last two cases, the quality of the resulting bounds depends on the combination weights
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Bounds

Restriction

» Suppose that optimal solutions can be easily constructed if an additional constraint is added
* Solving the restricted problem exactly may lead to suboptimal solutions to the original problem

e If it can be show that the optimal objective value of the restricted problem approximates that of

the original problem to some factor, a corresponding upper or lower bound can be obtained

Example - Steiner Minimum Trees (SMTs)

» Spanning trees are particular cases of Steiner trees with no Steiner points
e Under certain assumptions, minimum spanning trees (MSTs) are a 2-approximation of SMTs

e Half the weight of a MST is a lower bound on the weight of the corresponding SMT
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Bounds and construction rules

In combinatorial optimization, solutions are sets of components from the ground set

* Neighbourhood structure on the decision space, where (partial) solutions that differ in a single

component are neighbours of each other
* More restricted neighbourhood structures can be considered

— For simplicity of construction, so that structural constraints can be more easily enforced

— For simplicity of partial-solution evaluation, so that bounds can be more easily defined or

computed

= Construction rules
e All feasible solutions should be reachable, but not all infeasible (partial) solutions need to be

/\ Bound values depend on the actual construction rule!
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Concluding remarks

» Decision space and solution representation
e Solution structure
* Solution construction tied to

— The decision space

— Additional constraints
* Solution quality
e Lower bounds (under minimization)

— Forward-looking versus short-sighted approaches
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This presentation is based upon work from COST Action Randomised Optimisation Algorithms
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and Technology). This work is funded by national funds through FCT - Foundation for Science
and Technology, I.P, within the scope of the research unit UID/00326 — Centre for Informatics and

Systems of the University of Coimbra.

COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our
Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their

peers. This boosts their research, career and innovation.
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